精英家教网 > 高中数学 > 题目详情

已知圆M过两点A(1,-1),B(-1,1),且圆心M在x+y-2=0上.

(1)求圆M的方程;

(2)设P是直线3x+4y+8=0上的动点,PA′、PB′是圆M的两条切线,A′、B′为切点,求四边形PA′MB′面积的最小值.

 

(1)(x-1)2+(y-1)2=4.(2)2

【解析】(1)设圆M的方程为(x-a)2+(y-b)2=r2

(r>0),根据题意得解得a=b=1,r=2.

故所求圆M的方程为(x-1)2+(y-1)2=4.

(2)由题知,四边形PA′MB′的面积为S=S△PA′M+S△PB′M=|A′M||PA′|+|B′M||PB′|.又|A′M|=|B′M|=2,|PA′|=|PB′|,所以S=2|PA′|,而|PA′|=,即S=2.因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,所以|PM|min==3,所以四边形PA′MB′面积的最小值为S=2=2=2

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第8课时练习卷(解析版) 题型:填空题

若双曲线方程为x2-2y2=1,则它的左焦点的坐标为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第6课时练习卷(解析版) 题型:填空题

椭圆=1的离心率为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题

已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).

(1)求证:不论m取什么值,圆心在同一直线l上;

(2)与l平行的直线中,哪些与圆相交,相切,相离.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题

已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.

(1)求与圆C相切,且与直线l垂直的直线方程;

(2)在直线OA上(O为坐标原点),存在定点B(不同于点A),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点B的坐标.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:填空题

已知圆C关于y轴对称,经过点(1,0)且被x轴分成两段弧长之比为1∶2,则圆C的方程为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题

已知圆C的圆心与点P(-2,1)关于直线y=x+1对称,直线3x+4y-11=0与圆C相交于A、B两点,且=6,求圆C的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:解答题

已知△ABC的顶点为A(3,-1),AB边上的中线所在的直线方程为6x+10y-59=0,∠B的平分线所在的直线方程为x-4y+10=0,求BC边所在的直线方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第10课时练习卷(解析版) 题型:解答题

如图,设E:=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.求证:△PF1F2的面积S=b2tanθ.

 

 

查看答案和解析>>

同步练习册答案