精英家教网 > 高中数学 > 题目详情

已知函数f:R→R,x→3x-5.

(1)求x=2,5,8时的象f(2),f(5),f(8);

(2)求f(x)=35,47时的原象.

答案:
解析:

  解:(1)依题意f(x)=3x-5,∴f(2)=3×2-5=1,f(5)=3×5-5=10,

  f(8)=3×8-5=19,即2,5,8的象分别是1,10,19.

  (2)由3x-5=35,得x=.由3x-5=47,得x=,即35的原象是,47的原象是


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|<m|x|,则称f(x)为F函数.给出下列函数:
①f(x)=x2
②f(x)=sinx+cosx;
f(x)=
x
x2+x+1

④f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的序号为(  )
A、②④B、①③C、③④D、①②

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx-x(a∈R),则下列命题中错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•中山一模)已知函数f(x)=
13
x3-ax+b
,其中实数a,b是常数.
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”发生的概率;
(Ⅱ)若f(x)是R上的奇函数,g(a)是f(x)在区间[-1,1]上的最小值,求当|a|≥1时g(a)的解析式;
(Ⅲ)记y=f(x)的导函数为f′(x),则当a=1时,对任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)=f′(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+1(x∈R),a,b∈R.函数f(x)的图象在点P(1,f(1))处的切线方程为y=x+4.
(I)求函数f(x)的解析式;
(II)若函数f(x)在区间(k,k+
23
)
上是单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+2a2-2(a≠0),g(x)=-ex-
1
ex
,则下列命题为真命题的是(  )
A、?x∈R,都有f(x)<g(x)
B、?x∈R,都有f(x)>g(x)
C、?x0∈R,使得f(x0)<g(x0
D、?x0∈R,使得f(x0)=g(x0

查看答案和解析>>

同步练习册答案