精英家教网 > 高中数学 > 题目详情
20.已知某四棱锥的三视图如图所示,则该几何体的体积为(  )
A.2B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{16}{3}$

分析 由已知中棱锥的三视图,求出关键数据,代入棱锥体积公式,可得答案.

解答 解:由已知中三视图可得:
该四棱锥的体积V=$\frac{1}{3}$×2×2×2=$\frac{8}{3}$,
故选:C.

点评 本题考查的知识点是棱锥的体积和表面积,由三视图判断几何体的形状,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.点M是椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1上任一点,两个焦点分别为F1,F2,则△MF1F2的周长为(  )
A.4B.6C.8D.4+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a>0且a≠1,函数f(x)=loga$\frac{2}{1-x}$.
(1)求f(x)的定义域D及其零点;
(2)设g(x)=mx2-2mx+3,当a>1时,若对任意x1∈(-∞,-1],存在x2∈[3,4],使得f(x1)≤g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为积极配合松桃苗族自治县成立60周年县庆活动志愿者招募工作,我校成立由2名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,2名女同学共4名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.
(1)求当选的2名同学中恰有1名男同学的概率;
(2)求当选的2名同学中至少有1名女同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)是幂函数,其图象过点(2,8),定义在R上的函数y=F(x)是奇函数,当x>0时,F(x)=f(x)+1,
(1)求幂函数 f(x)的解析式;
(2)求F(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足an+2-2an+1+an=0(n∈N*),a2=4,其前7项和为42,设数列{bn}是等比数列,数列{bn}的前n项和为Sn满足b1=a1-1,S30-(310+1)S20+310S10=0.
(1)求数列{an},{bn}的通项公式;
(2)令cn=1+log3$\frac{{b}_{n}}{2}$,dn=$\frac{{a}_{n}}{{c}_{n}}$+$\frac{{c}_{n}}{{a}_{n}}$,求证:数列{dn}的前n项和Tn≥$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,内角A,B,C 所对的边分别为a,b,c,已知a2,$\frac{3{b}^{2}}{4}$,c2成等差数列,则sinB的最大值为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{1}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a>0,设函数f(x)=$\frac{201{6}^{x+1}+2011}{201{6}^{x}+1}$+x3(x∈[-a,a])的最大值为M,最小值为N,则M+N的值为(  )
A.2016B.4026C.4027D.4028

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定义域为R的奇函数.
(1)求k的值
(2)已知f(1)=$\frac{15}{4}$,函数g(x)=a2x+a-2x-2f(x),x∈[0,1],求g(x)的值域;
(3)在第(2)问的条件下,试问是否存在正整数λ,使得f(2x)≥λ•f(x)对任意x∈[-$\frac{1}{2}$,$\frac{1}{2}$]恒成立?若存在,请求出所有的正整数λ;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案