精英家教网 > 高中数学 > 题目详情
用数学归纳法证明“1+a+a2+…+a2n+1=
1-a2n+2
1-a
,(a≠1)”,在验证n=1时,左端计算所得项为(  )
A、1+a+a2+a3+a4
B、1+a
C、1+a+a2
D、1+a+a2+a3
考点:数学归纳法
专题:计算题,点列、递归数列与数学归纳法
分析:当n=1时,左端的a的次数由0次依次递增,最高次数为(2n+1)次,从而可知n=1时,左端计算所得项.
解答: 解:∵等式“1+a+a2+…+a2n+1=
1-a2n+2
1-a
,(a≠1)”左端和式中a的次数由0次依次递增,当n=k时,最高次数为(2k+1)次,
∴用数学归纳法证明“1+a+a2+…+a2n+1=
1-a2n+2
1-a
,(a≠1)”,在验证n=1时,左端计算所得项为1+a+a2+a3
故选:D.
点评:本题考查数学归纳法,考查观察、分析与推理能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若不等式|x+1|+|x-4|≥a+
4
a
对任意的实数x恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-y2=8的左右焦点分别是F1,F2,点Pn(xn,yn)(n=1,2,3…)在其右支上,且满足|Pn+1F2|=|PnF1|,P1F2⊥F1F2,则x2014的值是(  )
A、8056
2
B、8048
2
C、8056
D、8048

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
与抛物线y2=2px(p>0)的交点为:A、B,A、B连线经过抛物线的焦点F,且线段AB的长等于双曲线的虚轴长,则双曲线的离心率为(  )
A、
2
B、2
C、3
D、
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n为正偶数,用数学归纳法证明1-
1
2
+
1
3
-
1
4
+…+
1
n-1
-
1
n
=2(
1
n+2
+
1
n+4
+…+
1
2n
)
时,第一步应验证(  )
A、1=2×
1
2
B、1-
1
2
+
1
3
=2(
1
1+2
+
1
2+4
)
C、1-
1
2
+
1
3
-
1
4
=2(
1
4+2
+
1
4+4
)
D、1-
1
2
=2×
1
2+2

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式x2+ax+4≥0对一切x∈(0,1]恒成立,则a的取值范围为(  )
A、[0,+∞)
B、[-4,+∞)
C、[-4,4]
D、[-5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式|x-3|+|x-4|≥m的解集为R,则实数m的取值范围(  )
A、m<1
B、m≤1
C、m≤
1
10
D、m<
1
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,a+b=1,求证:
(Ⅰ)
1
a
+
1
b
+
1
ab
≥8;
(Ⅱ)(1+
1
a
)(1+
1
b
)≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:

(用数学归纳法证明)当n>1,n∈N时,求证:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
3n
9
10

查看答案和解析>>

同步练习册答案