精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且△POA的三边所在直线的斜率满足kOP+kOA=kPA.

(1)求点P的轨迹C的方程;

(2)若Q是轨迹C上异于点P的一个点,且=λ,直线OP与QA交于点M,问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.

 

(1)y=x2(x≠0且x≠-1)(2)(1,1)

【解析】(1)设点P(x,y)为所求轨迹上的任意一点,则由kOP+kOA=kPA得

整理得轨迹C的方程为y=x2(x≠0且x≠-1).

(2)设P(x1,),Q(x2,,M(x0,y0),

=λ可知直线PQ∥OA,则kPQ=kOA,故,即x2+x1=-1,

由O、M、P三点共线可知,=(x0,y0)与=(x1,)共线,

∴x0-x1y0=0,由(1)知x1≠0,故y0=x0x1,

同理,由=(x0+1,y0-1)与=(x2+1,-1)共线可知(x0+1)(-1)-(x2+1)(y0-1)=0,即(x2+1)[(x0+1)·(x2-1)-(y0-1)]=0,

由(1)知x2≠-1,故(x0+1)(x2-1)-(y0-1)=0,

将y0=x0x1,x2=-1-x1代入上式得(x0+1)(-2-x1)-(x0x1-1)=0,

整理得-2x0(x1+1)=x1+1,由x1≠-1得x0=-,由S△PQA=2S△PAM,得到QA=2AM,

∵PQ∥OA,∴OP=2OM,∴=2,∴x1=1,∴P的坐标为(1,1)

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题

已知圆C过点P(1,1),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.

(1)求圆C的方程;

(2)过点P作两条相异直线分别与圆C相交于A、B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.

(1)求实数m的取值范围;

(2)求该圆半径r的取值范围;

(3)求圆心的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:解答题

直线l1:2x+y-4=0,求l1关于直线l:3x+4y-1=0对称的直线l2的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:填空题

已知直线l:y=3x+3,那么直线x-y-2=0关于直线l对称的直线方程为____________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题

设A1、A2与B分别是椭圆E:=1(a>b>0)的左、右顶点与上顶点,直线A2B与圆C:x2+y2=1相切.

(1)求证:=1;

(2)P是椭圆E上异于A1、A2的一点,若直线PA1、PA2的斜率之积为-,求椭圆E的方程;

(3)直线l与椭圆E交于M、N两点,且·=0,试判断直线l与圆C的位置关系,并说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题

如图,已知梯形ABCD中|AB|=2|CD|,点E满足=λ,双曲线过C、D、E三点,且以A、B为焦点.当≤λ≤时,求双曲线离心率e的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第10课时练习卷(解析版) 题型:解答题

给定椭圆C:=1(a>b>0),称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(,0),其短轴的一个端点到点F的距离为.

(1)求椭圆C和其“准圆”的方程;

(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B、D是椭圆C上的两相异点,且BD⊥x轴,求·的取值范围;

(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年陕西西工大附中高三上学期第四次适应性训练文数学卷(解析版) 题型:解答题

某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

(1)求应从小学、中学、大学中分别抽取的学校数目;

(2)若从抽取的6所学校中随机抽取2所学校,求抽取的2所学校均为小学的概率.

 

查看答案和解析>>

同步练习册答案