精英家教网 > 高中数学 > 题目详情

【题目】【2017重庆二诊】已知椭圆 的左顶点为,右焦点为,过点且斜率为1的直线交椭圆于另一点,交轴于点

(1)求椭圆的方程;

(2)过点作直线与椭圆交于两点,连接为坐标原点)并延长交椭圆于点,求面积的最大值及取最大值时直线的方程.

【答案】(Ⅰ);(Ⅱ) 面积的最大值为3,此时直线的方程为

【解析】(Ⅰ)由已知,易知求得点 的坐标,由,利用向量的坐标表示可求得点坐标,联立右焦点坐标及椭圆中关系式,代入椭圆方程进行运算即可;(Ⅱ)由椭圆对称性得, ,由题意,联立直线与椭圆的方程,求得的底边长,再由点到直线距离公式求得的高,从而建立所求三角形面积的函数,通过求面积函数的最大值,从而问题可得解.

试题解析:(Ⅰ)由题知,故,代入椭圆的方程得,又

,椭圆

(Ⅱ)由题知,直线不与轴重合,故可设,由

,则,由关于原点对称知,

,即,当且仅当时等号成立,

面积的最大值为3,此时直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校举行元旦汇演,七位评委为某班的小品打出的分数如茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其左、右焦点分别为,左、右顶点分别为,上、下顶点分别为,四边形与四边形的面积之和为4.

(1)求椭圆的方程;

(2)直线与椭圆交于两点,其中为坐标原点,求直线被以线段为直径的圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面 分别为的中点,点在线段上.

(Ⅰ)求证:平面

(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017福建三明5月质检】已知直线与抛物线相切,且与轴的交点为,点.若动点与两定点所构成三角形的周长为6.

() 求动点的轨迹的方程;

() 设斜率为的直线交曲线两点,当,且位于直线的两侧时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市举办校园足球赛,组委会为了做好服务工作,招募了12名男志愿者和10名女志愿者,调查发现男女志愿者中分别有8人和4人喜欢看足球比赛,其余不喜欢
(1)根据以上数据完成以下2×2列联表:

喜欢看足球比赛

不喜欢看足球比赛

总计

总计


(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜欢看足球比赛有关?
(3)从女志愿者中抽取2人参加某场足球比赛服务工作,若其中喜欢看足球比赛的人数为ξ,求ξ的分布列和数学期望.
附:参考公式:K2= ,其中n=a+b+c+d
参考数据:

P(K2≥k0

0.4

0.25

0.10

0.010

k0

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017湖南长沙二模】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:

质量指标值

等级

三等品

二等品

一等品

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(1)根据以上抽样调查数据 ,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?

(2)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017河北唐山三模】已知函数 .

(1)讨论函数的单调性;

(2)若函数在区间有唯一零点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.

(1)求证:BD1∥平面A1DE;
(2)求直线A1E与平面AD1E所成角.

查看答案和解析>>

同步练习册答案