精英家教网 > 高中数学 > 题目详情
精英家教网三棱锥S-ABC中,∠SBA=∠SCA=90°,△ABC是斜边AB=a的等腰直角三角形,则以下结论中:
①异面直线SB与AC所成的角为90°; 
②直线SB⊥平面ABC; 
③面SBC⊥面SAC; 
④点C到平面SAB的距离是
12
a

其中正确结论的序号是
 
分析:由题目中的条件可以证得,三棱锥的一个侧棱SB⊥平面ABC,面SBC⊥AC,由此易判断得①②③④都是正确的
解答:解:由题意三棱锥S-ABC中,∠SBA=∠SCA=90°,知SB⊥BA,SC⊥CA,
又△ABC是斜边AB=a的等腰直角三角形可得AC⊥BC,又BC∩SB=B,故有AC⊥面SBC,故有SB⊥AC,故①正确,
由此可以得到SB⊥平面ABC,故②正确,
再有AC?面SAC得面SBC⊥面SAC,故③正确,
△ABC是斜边AB=a的等腰直角三角形,点C到平面SAB的距离即点C到斜边AB的中点的距离,即
1
2
a
,故④正确.
故答案为①②③④
点评:本题考查了异面直线所成的角,线面垂直,面面垂直以及点到面的距离的求法,本题涉及到了立体几何中多个重要位置关系与典型问题的求法,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图在三棱锥S-ABC中∠ACB=90°,SA⊥面ABC,AC=2,BC=
13
SB=
29

(1)证明SC⊥BC.
(2)求侧面SBC与底面ABC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.
(1)求证:平面MAP⊥平面SAC.
(2)求二面角M-AC-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2
3
,M,N分别为AB,SB的中点.
(1)证明:AC⊥SB;
(2)求二面角N-CM-B的大小;
(3)求点B到平面CMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,△ABC是边长为8的正三角形,SA=SC=2
7
,二面角S-AC-B的大小为60°
(1)求证:AC⊥SB;
(2)求三棱锥S-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O为BC中点.
(Ⅰ)求点B到平面SAC的距离;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

同步练习册答案