精英家教网 > 高中数学 > 题目详情
16.已知${({1-2x})^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,
(Ⅰ)求a1+a2+…+a7的值;
(Ⅱ)求a0+a2+a4+a6的值.

分析 (Ⅰ)利用赋值法x=0,x=1求解即可.
(Ⅱ)利用x=1与x=-1,通过解方程求解即可.

解答 (本小题满分10分)
解:( I)令x=1,则(1-2x)7=(1-2)7=-1=a0+a1+a2+…+a7
再令x=0,则1=a0,所以a1+a2+…+a7=-2,
( II)令x=1,(1-2x)7=(1-2)7=-1=a0+a1+a2+…+a7…①
令x=-1,(1-2x)7=(1+2)7=37=a0-a1+a2-a3+a4-a5+a6-a7…②
①+②得37-1=2(a0+a2+a4+a6),
所以 ${a_0}+{a_2}+{a_4}+{a_6}=\frac{1}{2}({{3^7}-1})=2186$.

点评 本题考查二项式定理的应用,考查赋值法的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知抛物线y2=2px(p>0)的焦点F与双曲线$\frac{x^2}{12}$-$\frac{y^2}{4}$=1的一个焦点重合,直线y=x-4与抛物线交于A,B两点,则|AB|等于(  )
A.28B.32C.20D.40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下面有5个命题:
①函数y=sin2x的最小正周期是π.
②若α为第二象限角,则$\frac{α}{3}$在一、三、四象限;
③在同一坐标系中,函数y=sin x的图象和函数y=x的图象有3个公共点.
④把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$得到y=3sin2x的图象.
⑤函数y=sin(x-$\frac{π}{2}$)在[0,π]上是减函数.
其中,真命题的编号是①④.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的各项均为正数,观察程序框图,若k=5,k=10时,分别有S=$\frac{5}{11}$和S=$\frac{10}{21}$.
(1)试求数列{an}的通项公式;
(2)令bn=3n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把十进制数89化成五进制数的末位数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n个三角形数为$\frac{n(n+1)}{2}$=$\frac{1}{2}$n2+$\frac{1}{2}$n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数     N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n
正方形数      N(n,4)=n2
五边形数      $N({n,5})=\frac{3}{2}{n^2}-\frac{1}{2}n$
六边形数      N(n,6)=2n2-n

可以推测N(n,k)的表达式,由此计算 N(20,32)=5720.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求$sin(A+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x+xlnx,若a∈Z,且直线y=ax在曲线y=f(x+1)的下方,则a的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{4}$x3-$\frac{3}{4}$x-$\frac{7}{2}$.x∈[0,2].
(I)求f(x)的单调区间与最值;
(II)设a>0,函数g(x)=x3-3a2x-2a,x∈[0,1],若对任意的x1∈[0,2]总存在x0∈[0,1]使得g(x0)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案