精英家教网 > 高中数学 > 题目详情
11.把十进制数89化成五进制数的末位数为(  )
A.4B.3C.2D.1

分析 利用“除k取余法”是将十进制数除以5,然后将商继续除以5,直到商为0,然后将依次所得的余数倒序排列即可得到答案.

解答 解:89÷5=17…4
17÷5=3…2
3÷5=0…3
故89(10)=324(5
末位数字为4.
故选:A.

点评 本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a,b,c分别为角A,B,C的对边,且满足4cos2$\frac{A}{2}$-cos2(B+C)=$\frac{7}{2}$,若a=2,则△ABC的面积的最大值是(  )
A.1B.$\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A,B为圆O:x2+y2=4与y轴的交点(A在B上),过点P(0,4)的直线l交圆O于M,N两点(点M在上、点N在下).
(1)若弦MN的长等于$2\sqrt{3}$,求直线l的方程;
(2)若M,N都不与A,B重合,直线AN与BM的交点为C.证明:点C在直线y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=2sin($\frac{2π}{3}$x+$\frac{π}{6}$)的部分图象如图所示.
(1)写出f(x)的最小正周期及图中x0,y0的值;
(2)求f(x)在区间$[{-\frac{1}{2},\frac{3}{4}}]$上的最大值和最小值.
(3)求f(x)在区间[-5,-2]上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知等比数列{an}中,公比q>1,且a1+a4=9,a2a3=8,则$\frac{{{a_{2015}}+{a_{2016}}}}{{{a_{2013}}+{a_{2014}}}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知${({1-2x})^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,
(Ⅰ)求a1+a2+…+a7的值;
(Ⅱ)求a0+a2+a4+a6的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下面几种推理是合情推理的是(  )
(1)由圆的性质类比出球的有关性质;
(2)由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是180°;
(3)已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2).由an+1=an+6an-1可推出a n+1+2a n=3(an+2an-1) (n≥2),故数列{an+1+2an}是等比数列.
(4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)•180°.
A.(1)(2)B.(1)(3)C.(1)(2)(4)D.(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.-225°化为弧度为(  )
A.$\frac{3π}{4}$B.-$\frac{7π}{4}$C.-$\frac{5π}{4}$D.-$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.己知函数f(x)=ex-ex,g(x)=2ax+a,其中e为自然对数的底数,a∈R.
(1)求证:f(x)≥0;
(2)若存在x0∈R,使f(x0)=g(x0),求a的取值范围;
(3)若对任意的x∈(-∞,-1),f(x)≥g(x)恒成立,求a的最小值.

查看答案和解析>>

同步练习册答案