精英家教网 > 高中数学 > 题目详情
20.-225°化为弧度为(  )
A.$\frac{3π}{4}$B.-$\frac{7π}{4}$C.-$\frac{5π}{4}$D.-$\frac{3π}{4}$

分析 根据${1}^{°}=\frac{π}{180}弧度$即可得出答案.

解答 解:-225°=$-225×\frac{π}{180}$弧度=$-\frac{5π}{4}$弧度.
故选:C.

点评 本题考查了角度化为弧度的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=x3-6bx+3b在(0,1)内有最小值,则实数b的取值范围(  )
A.(0,1)B.(-∞,1)C.(0,+∞)D.$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把十进制数89化成五进制数的末位数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求$sin(A+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3+3ax2+(3-6a)x+12a-3 (a∈R)
(1)证明:曲线y=f(x)在x=0处的切线过点(2,3);
(2)若f(x)在x=x0 处取得极小值,x0∈(1,3)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x+xlnx,若a∈Z,且直线y=ax在曲线y=f(x+1)的下方,则a的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:$\left\{\begin{array}{l}{x=1+t}\\{y=-\frac{1}{2}t}\end{array}\right.$(t为参数),曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)
(1)写出直线l和曲线C的普通方程;
(2)求直线l被曲线C截得的线段中点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若过点(0,2)的直线与抛物线y2=8x有且只有一个公共点,则这样的直线有(  )
A.一条B.两条C.三条D.四条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过椭圆$\frac{x^2}{4}+\frac{y^2}{3}$=1的右焦点F作两条互相垂直的弦AB,CD,若弦AB,CD的中点分别为M,N,则直线MN恒过定点$({\frac{4}{7},\;0})$.

查看答案和解析>>

同步练习册答案