精英家教网 > 高中数学 > 题目详情
8.设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求$sin(A+\frac{π}{3})$的值.

分析 (1)利用正弦定理,二倍角公式结合已知可得$\frac{a}{2sinBcosB}$=$\frac{3}{sinB}$,整理得a=6cosB,由余弦定理可解得a的值,
(2)由(1)及已知利用余弦定理可求cosA,利用同角三角函数基本关系式可求sinA,进而利用两角和的正弦函数公式即可计算得解.

解答 解:(1)在△ABC中,∵A=2B,$\frac{a}{sinA}=\frac{b}{sinB}$,b=3,c=1,
∴$\frac{a}{2sinBcosB}$=$\frac{3}{sinB}$,整理得:a=6cosB,
∴由余弦定理可得:a=6×$\frac{{a}^{2}+1-9}{2a}$,
∴a=2$\sqrt{3}$,
(2)∵b=3,c=1,a=2$\sqrt{3}$,可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{9+1-12}{2×3×1}$=-$\frac{1}{3}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{2\sqrt{2}}{3}$,
∴$sin(A+\frac{π}{3})$=$\frac{1}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA=$\frac{1}{2}×$$\frac{2\sqrt{2}}{3}$+$\frac{\sqrt{3}}{2}$×(-$\frac{1}{3}$)=$\frac{{2\sqrt{2}-\sqrt{3}}}{6}$.

点评 本题主要考查了正弦定理,余弦定理,三角函数恒等变换的应用在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx-ax,g(x)=-x2-2.
(1)若对任意x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;
(2)若a=-1时,当且仅当x=$\frac{1}{e^2}$时,f(x)的最小值为-$\frac{1}{e^2}$,证明:对任意x∈(0,+∞),都有lnx+1>$\frac{1}{e^x}-\frac{2}{ex}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=2sin($\frac{2π}{3}$x+$\frac{π}{6}$)的部分图象如图所示.
(1)写出f(x)的最小正周期及图中x0,y0的值;
(2)求f(x)在区间$[{-\frac{1}{2},\frac{3}{4}}]$上的最大值和最小值.
(3)求f(x)在区间[-5,-2]上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知${({1-2x})^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,
(Ⅰ)求a1+a2+…+a7的值;
(Ⅱ)求a0+a2+a4+a6的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下面几种推理是合情推理的是(  )
(1)由圆的性质类比出球的有关性质;
(2)由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是180°;
(3)已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2).由an+1=an+6an-1可推出a n+1+2a n=3(an+2an-1) (n≥2),故数列{an+1+2an}是等比数列.
(4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)•180°.
A.(1)(2)B.(1)(3)C.(1)(2)(4)D.(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=|x+1|+|x+a|,若不等式f(x)≥6的解集为(-∞,-2]∪[4,+∞),则a的值为(  )
A.-7或3B.-7或5C.-3D.3或5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.-225°化为弧度为(  )
A.$\frac{3π}{4}$B.-$\frac{7π}{4}$C.-$\frac{5π}{4}$D.-$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在数列{an}中,a1=0,an+2+(-1)nan=2.记Sn是数列{an}的前n项和,则S2016-S2013=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对于实数a,b,c,“a>b”是“ac2>bc2”的必要不充分条件.

查看答案和解析>>

同步练习册答案