精英家教网 > 高中数学 > 题目详情
18.对于实数a,b,c,“a>b”是“ac2>bc2”的必要不充分条件.

分析 不等式的基本性质,“a>b”⇒“ac2>bc2”必须有c2>0这一条件.

解答 解:当c=0时显然左边无法推导出右边,
但右边可以推出左边,
故答案为:必要不充分.

点评 充分利用不等式的基本性质是推导不等关系的重要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求$sin(A+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若过点(0,2)的直线与抛物线y2=8x有且只有一个公共点,则这样的直线有(  )
A.一条B.两条C.三条D.四条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{4}$x3-$\frac{3}{4}$x-$\frac{7}{2}$.x∈[0,2].
(I)求f(x)的单调区间与最值;
(II)设a>0,函数g(x)=x3-3a2x-2a,x∈[0,1],若对任意的x1∈[0,2]总存在x0∈[0,1]使得g(x0)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知α∈(π,$\frac{3π}{2}$),tanα=2,则cosα=(  )
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$-\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线$\sqrt{3}$x+y-2=0截圆x2+y2=4得到的劣弧所对的圆周角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过椭圆$\frac{x^2}{4}+\frac{y^2}{3}$=1的右焦点F作两条互相垂直的弦AB,CD,若弦AB,CD的中点分别为M,N,则直线MN恒过定点$({\frac{4}{7},\;0})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=(x2-2ax)lnx+bx2,a,b∈R.
(1)当a=1,b=-1时,设g(x)=(x-1)2lnx+x,求证:对任意的x>1,g(x)-f(x)>x2+x+e-ex
(2)当b=2时,若对任意x∈[1,+∞),不等式2f(x)>3x2+a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某市要修建一个扇形绿化区域,其周长定为40米,求它的半径和圆心角取什么值时,才能使扇形绿化区域的面积最大?最大面积是多少?

查看答案和解析>>

同步练习册答案