分析 (1)由题意可知,将原不等式转化成a≤lnx+x+$\frac{2}{x}$在x∈(0,+∞) 恒成立,构造F(x)=lnx+x+$\frac{2}{x}$,求导,根据函数单调性,F(x)在x=1处取得极小值,也是最小值,即F(x)min=F(1)=3,实数a的取值范围;
(2)将问题转化成xlnx+x>$\frac{x}{e^x}-\frac{2}{e}$,(x∈(0,+∞))恒成立,G(x)=$\frac{x}{e^x}-\frac{2}{e}$,求导,根据函数的单调性可知,G(x)在x=1处取得极大值,也是最大值,G(x)max=G(1)=-$\frac{1}{e}$,
-$\frac{1}{e^2}$>-$\frac{1}{e}$,所以不等式得证.
解答 解:(1)对任意x∈(0,+∞),f(x)≥g(x)恒成立,
即xlnx-ax≥-x2-2恒成立,也就是a≤lnx+x+$\frac{2}{x}$在x∈(0,+∞) 恒成立.
令F(x)=lnx+x+$\frac{2}{x}$,则F′(x)=$\frac{1}{x}+1-\frac{2}{x^2}=\frac{{{x^2}+x-2}}{x^2}=\frac{(x+2)(x-1)}{x^2}$…(3分)
在区间(0,1),F′(x)<0,在区间(1,+∞),F′(x)>0,
∴F(x)在x=1处取得极小值,也是最小值,即F(x)min=F(1)=3,
∴a≤3…(6分)
(2)证明:问题等价于证明,xlnx+x>$\frac{x}{e^x}-\frac{2}{e}$,(x∈(0,+∞))恒成立.
设G(x)=$\frac{x}{e^x}-\frac{2}{e}$(x∈(0,+∞)),则G′(x)=$\frac{1-x}{e^x}$,
∴当0<x<1时,G′(x)>0,
当x>1时,G′(x)<0,
故G(x)在x=1处取得极大值,也是最大值,
∴G(x)max=G(1)=-$\frac{1}{e}$,
∵-$\frac{1}{e^2}$>-$\frac{1}{e}$,
∴不等式得证…(12分)
点评 本题考查利用导数研究函数的单调性及极值,考查导数的综合应用,考查转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{6}$ | B. | $\frac{{\sqrt{6}}}{4}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 28 | B. | 32 | C. | 20 | D. | 40 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (-∞,1) | C. | (0,+∞) | D. | $(0,\frac{1}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com