3£®ÏÂÃæ¼¸ÖÖÍÆÀíÊǺÏÇéÍÆÀíµÄÊÇ£¨¡¡¡¡£©
£¨1£©ÓÉÔ²µÄÐÔÖÊÀà±È³öÇòµÄÓйØÐÔÖÊ£»
£¨2£©ÓÉÖ±½ÇÈý½ÇÐΡ¢µÈÑüÈý½ÇÐΡ¢µÈ±ßÈý½ÇÐÎÄڽǺÍÊÇ180¡ã£¬¹éÄɳöËùÓÐÈý½ÇÐεÄÄڽǺͶ¼ÊÇ180¡ã£»
£¨3£©ÒÑÖªÊýÁÐ{an}Âú×ãa1=5£¬a2=5£¬an+1=an+6an-1£¨n¡Ý2£©£®ÓÉan+1=an+6an-1¿ÉÍÆ³öa n+1+2a n=3£¨an+2an-1£© £¨n¡Ý2£©£¬¹ÊÊýÁÐ{an+1+2an}ÊǵȱÈÊýÁУ®
£¨4£©Èý½ÇÐÎÄڽǺÍÊÇ180¡ã£¬ËıßÐÎÄڽǺÍÊÇ360¡ã£¬Îå±ßÐÎÄڽǺÍÊÇ540¡ã£¬Óɴ˵Ã͹¶à±ßÐÎÄڽǺÍÊÇ£¨n-2£©•180¡ã£®
A£®£¨1£©£¨2£©B£®£¨1£©£¨3£©C£®£¨1£©£¨2£©£¨4£©D£®£¨2£©

·ÖÎö ÓûÅжÏÍÆÀíÊDz»ÊǺÏÇéÍÆÀí¡¢ÑÝÒïÍÆÀí£¬Ö÷Òª¿´ÊDz»ÊÇ·ûºÏºÏÇéÍÆÀí¡¢ÑÝÒïÍÆÀíµÄ¶¨Ò壬ÅжÏÒ»¸öÍÆÀí¹ý³ÌÊÇ·ñÊÇÀà±ÈÍÆÀí¹Ø¼üÊÇ¿´ËûÊÇ·ñ·ûºÏÀà±ÈÍÆÀíµÄ¶¨Ò壬¼´ÊÇ·ñÊÇÓÉÌØÊâµ½ÓëËüÀàËÆµÄÁíÒ»¸öÌØÊâµÄÍÆÀí¹ý³Ì£¬Àà±ÈÍÆÀíµÄÊÇ¿´ÊÇ·ñ·ûºÏÀà±ÈÍÆÀíµÄ¶¨Ò壮

½â´ð ½â£º£¨1£©ÎªÀà±ÈÍÆÀí£¬ÔÚÍÆÀí¹ý³ÌÓÉÔ²µÄÐÔÖÊÀà±È³öÇòµÄÓйØÐÔÖÊ£»
£¨2£©Îª¹éÄÉÍÆÀí£¬·ûºÏ¹éÄÉÍÆÀíµÄ¶¨Ò壬¼´ÊÇÓÉÌØÊâµ½Ò»°ãµÄÍÆÀí¹ý³Ì£»
£¨3£©ÎªÑÝÒïÍÆÀí£»
£¨4£©Îª¹éÄÉÍÆÀí£¬·ûºÏ¹éÄÉÍÆÀíµÄ¶¨Ò壬¼´ÊÇÓÉÌØÊâµ½Ò»°ãµÄÍÆÀí¹ý³Ì£®
¹ÊÑ¡£ºC£®

µãÆÀ ÅжÏÒ»¸öÍÆÀí¹ý³ÌÊÇ·ñÊǹéÄÉÍÆÀí¹Ø¼üÊÇ¿´ËûÊÇ·ñ·ûºÏ¹éÄÉÍÆÀíµÄ¶¨Ò壬¼´ÊÇ·ñÊÇÓÉÌØÊâµ½Ò»°ãµÄÍÆÀí¹ý³Ì£®
ÅжÏÒ»¸öÍÆÀí¹ý³ÌÊÇ·ñÊÇÀà±ÈÍÆÀí¹Ø¼üÊÇ¿´ËûÊÇ·ñ·ûºÏÀà±ÈÍÆÀíµÄ¶¨Ò壬¼´ÊÇ·ñÊÇÓÉÌØÊâµ½ÓëËüÀàËÆµÄÁíÒ»¸öÌØÊâµÄÍÆÀí¹ý³Ì£®
ÅжÏÒ»¸öÍÆÀí¹ý³ÌÊÇ·ñÊÇÑÝÒïÍÆÀí¹Ø¼üÊÇ¿´ËûÊÇ·ñ·ûºÏÑÝÒïÍÆÀíµÄ¶¨Ò壬ÄÜ·ñ´ÓÍÆÀí¹ý³ÌÖÐÕÒ³ö¡°Èý¶ÎÂÛ¡±µÄÈý¸ö×é³É²¿·Ö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÕý·½ÐÎABCDµÄ±ß³¤Îª4£¬ÇÒAB=AE=BF=$\frac{1}{2}$EF£¬AB¡ÎEF£¬AD¡Íµ×ÃæAEFB£¬GÊÇEFµÄÖе㣮
£¨1£©ÇóÖ¤£ºDE¡ÎÆ½ÃæAGC
£¨2£©ÇóÖ¤£ºAG¡ÍÆ½ÃæBCE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®5λ¹Ë¿Í½«¸÷×ÔµÄñ×Ó·ÅÔÚÒ¼ÜÉÏ£¬È»ºó£¬Ã¿ÈËËæÒâÈ¡×ßÒ»¶¥Ã±×Ó£¬ÔòûÓÐÒ»¸öÈËÄõ½×Ô¼ºÃ±×ӵĸÅÂÊΪ$\frac{11}{30}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®°ÑÊ®½øÖÆÊý89»¯³ÉÎå½øÖÆÊýµÄĩλÊýΪ£¨¡¡¡¡£©
A£®4B£®3C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¶¥µãÔÚÔ­µã£¬¶Ô³ÆÖáÊÇ×ø±êÖᣬÇÒ¾­¹ýµã£¨4£¬-2£©µÄÅ×ÎïÏß·½³ÌÊÇ£¨¡¡¡¡£©
A£®y2=xB£®x2=-8yC£®y2=-x»òx2=8yD£®y2=x»òx2=-8y

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Éè¡÷ABCµÄÄÚ½ÇA£¬B£¬CËù¶Ô±ßµÄ³¤·Ö±ðÊÇa£¬b£¬c£¬ÇÒb=3£¬c=1£¬A=2B£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©Çó$sin£¨A+\frac{¦Ð}{3}£©$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=x3+3ax2+£¨3-6a£©x+12a-3 £¨a¡ÊR£©
£¨1£©Ö¤Ã÷£ºÇúÏßy=f£¨x£©ÔÚx=0´¦µÄÇÐÏß¹ýµã£¨2£¬3£©£»
£¨2£©Èôf£¨x£©ÔÚx=x0 ´¦È¡µÃ¼«Ð¡Öµ£¬x0¡Ê£¨1£¬3£©ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÖ±Ïßl£º$\left\{\begin{array}{l}{x=1+t}\\{y=-\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßC£º$\left\{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©
£¨1£©Ð´³öÖ±ÏßlºÍÇúÏßCµÄÆÕͨ·½³Ì£»
£¨2£©ÇóÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏß¶ÎÖеãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖª¦Á¡Ê£¨¦Ð£¬$\frac{3¦Ð}{2}$£©£¬tan¦Á=2£¬Ôòcos¦Á=£¨¡¡¡¡£©
A£®$\frac{{\sqrt{5}}}{5}$B£®$-\frac{{\sqrt{5}}}{5}$C£®$\frac{{2\sqrt{5}}}{5}$D£®$-\frac{{2\sqrt{5}}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸