精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥1}\\{3x-1,x<1}\end{array}\right.$,则满足f(f(a))=2f(a)的a的取值范围(  )
A.[$\frac{2}{3}$,1]B.[$\frac{2}{3}$,+∞)C.[1,+∞)D.[0,1]

分析 由已知得f(a)≥1,当a≥1时,f(a)=2a≥1,当a<1时,f(a)=3a-1≥1,由此能求出a的取值范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥1}\\{3x-1,x<1}\end{array}\right.$,f(f(a))=2f(a)
∴f(a)≥1,
当a≥1时,f(a)=2a≥1,解得a≥0,∴a≥1;
当a<1时,f(a)=3a-1≥1,解得a$≥\frac{2}{3}$,∴$\frac{2}{3}≤a<1$.
∴a的取值范围是[$\frac{2}{3}$,+∞).
故选:B.

点评 本题考查函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=loga$\frac{x-5}{x+5}$(a>0且a≠1).
(1)判断f(x)的奇偶性,并加以证明;
(2)设g(x)=loga(x-3),h(x)=f(x)-g(-x)-1在其定义域内有零点,求a的取值范围;
(3)是否存在实数m使得f(x+2)+f(m-x)为常数?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,集合A={x|0≤x≤2),B={x|1<x<3),则图中阴影部分所表示的集合为(  )
A.{x|2<x<3}B.{x|2≤x<3}C.{x|0≤x<3}D.{x|1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.将圆x2+y2=1上每一点的横坐标都伸长为原来的$\sqrt{3}$倍,纵坐标都伸长为原来的2倍,得到曲线C.
(1)求曲线C的参数方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知点P的极坐标为$(2,\frac{2π}{3})$,且点P关于直线$θ=\frac{5π}{6}$的对称点为点Q,设直线PQ与曲线C相交于A、B两点,求线段AB的垂直平分线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过抛物线y2=4x的焦点作倾斜角为60度的直线交抛物线于A,B两点,则|AB|=(  )
A.$\frac{8}{3}\sqrt{7}$B.$\frac{16}{3}$C.$\frac{8}{3}$D.$\frac{16}{3}\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}:满足a1=6,an+1=an2+4an+2,(n∈N*
(1)设Cn=log2(an+2),求证{Cn}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn=$\frac{1}{{a}_{n}-2}$-$\frac{1}{{{a}_{n}}^{2}+4{a}_{n}}$,数列{bn}的前n项和为Tn,求证:$\frac{7}{30}$≤Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,已知PA垂直于圆O所在平面,AB是圆O的直径,是圆O的圆周上异于A、B的任意一点,且PA=AC,点E是线段PC的中点.求证:AE⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\frac{x+1}{x-1}$,且f(a)=2,则a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AC是圆O的直径,AC=4,PA,PB是圆O的切线,A,B为其切点,过A作AD⊥BP,交BP于D点,连接AB、BC.
(1)求证:△ABC~△ADB;
(2)若切线AP的长为$2\sqrt{3}$,求弦AB的长.

查看答案和解析>>

同步练习册答案