精英家教网 > 高中数学 > 题目详情
已知函数 f(x)=alnx-(a+1)x+
1
2
x2(a≥0)

(Ⅰ)若直线l与曲线y=f(x)相切,切点是P(2,0),求直线l的方程;
(Ⅱ)讨论f(x)的单调性.
(I)因为切点是P(2,0),
f(2)=aln2-2(a+1)+
1
2
×22=0
,∴a=0,
∴函数f(x)=
1
2
x2-x
,又f′(x)=x-1,
所以切线的斜率为:f′(2)=1.
所以切线l的方程为y=x-2.
函数 f(x)=alnx-(a+1)x+
1
2
x2(a≥0)

(II)由题意得,f′(x)=
a
x
-(1+a)+x=
(x-1)(x-a)
x
(x>0)
由f′(x)=0,得x1=1,x2=a
①当0<a<1时,令f′(x)>0,x>0,可得0<x<a或x>1;
令f′(x)<0,x>0,可得a<x<1,
∴函数f(x)的单调增区间是(0,a)和(1,+∞),单调减区间是(a,1);
②当a=1时,f′(x)=
(x-1)2
x
≥0,当且仅当x=1时,f′(x)=0,
所以函数f(x)在区间(0,+∞)上是单调增函数;
③当a>1时,令f′(x)>0,x>0,可得0<x<1或x>a;
令f′(x)<0,x>0,可得1<x<a
∴函数f(x)的单调增区间是(0,1)和(a,+∞),单调减区间是(1,a).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案