精英家教网 > 高中数学 > 题目详情

【题目】1)如图,对于任一给定的四面体,找出依次排列的四个相互平行的平面,使得,且其中每相邻两个平面间的距离都相等;

2)给定依次排列的四个相互平行的平面,其中每相邻两个平面间的距离为1,若一个正四面体的四个顶点满足:,求该正四面体的体积.

【答案】1)见解析; 2.

【解析】

1)根据题意要作出相互平行且相邻距离相等的平面,所以先作直线平行,且取等分点,例如可取的三等分点的中点的中点,则有,从而可得面面平行;

2)先将正四面体补形为正方体,结合条件确定正方体的棱长,即可求正四面体的体积.

1

的三等分点的中点的中点

过三点作平面,过三点作平面

因为,所以平面平面

再过点分别作平面与平面平行,那么四个平面,依次相互平行,

由线段被平行平面截得的线段相等知,每相邻两个平面间的距离相等,故为所求平面.

2)如图,将此正四面体补形为正方体(如图),

分别取的中点

平面是分别过点的两平行平面,若其距离为1

则正四面体满足条件,右图为正方体的下底面,设正方体的棱长为

,因为

在直角三角形中,,所以,所以

又正四面体的棱长为

所以此正四面体的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点A为椭圆的右顶点,点B为椭圆的上顶点,点F为椭圆的左焦点,且的面积是

Ⅰ.求椭圆C的方程;

Ⅱ.设直线与椭圆C交于PQ两点,点P关于x轴的对称点为不重合),则直线x轴交于点H,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子里有大小相同的3个红球和3个黑球,从盒子里随机取球,取到每个球的可能性是相同的,设取到一个红球得1分,取到一个黑球得0.

(Ⅰ)若从盒子里一次随机取出了3个球,求得2分的概率;

(Ⅱ)着从盒子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分ξ的概率分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:若,则

(2)当时,试讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形为正方形,平面

求证平面

与平面所成角的正弦值;

在棱上是否存在一点,使得平面平面?如果存在,求的值;如果不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.

(1)求这4000名考生的半均成绩(同一组中数据用该组区间中点作代表);

2)由直方图可认为考生考试成绩z服从正态分布,其中分别取考生的平均成绩和考生成绩的方差,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?

3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为,求.(精确到0.001

附:

,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点是曲线上的动点,点的延长线上,且,点的轨迹为

(1)求直线及曲线的极坐标方程;

(2)若射线与直线交于点,与曲线交于点(与原点不重合),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,为等边三角形,是线段上的一点,且平面.

(1)求证:的中点;

(2)若的中点,连接,平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)当时,记的最小值为,证明:.

查看答案和解析>>

同步练习册答案