精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点是曲线上的动点,点的延长线上,且,点的轨迹为

(1)求直线及曲线的极坐标方程;

(2)若射线与直线交于点,与曲线交于点(与原点不重合),求的最大值.

【答案】(1)直线l的极坐标方程为.的极坐标方程为

(2)

【解析】

(1)消参可得直线的普通方程,再利用公式把极坐标方程与直角坐标方程进行转化,从而得到直线的极坐标方程;利用相关点法求得曲线的极坐标方程;

(2)利用极坐标中极径的意义求得长度,再把所求变形成正弦型函数,进一步求出结果.

(1)消去直线l参数方程中的t,得

,得直线l的极坐标方程为

由点Q在OP的延长线上,且,得

,则

由点P是曲线上的动点,可得,即

所以的极坐标方程为

(2)因为直线l及曲线的极坐标方程分别为

所以

所以

所以当时,取得最大值,为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知如图, 平面,四边形为等腰梯形, .

(1)求证:平面平面

(2)已知中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某城市有一条从正西方AO通过市中心O后向东北OB的公路,现要修一条地铁L,在OAOB上各设一站AB,地铁在AB部分为直线段,现要求市中心OAB的距离为,设地铁在AB部分的总长度为

按下列要求建立关系式:

,将y表示成的函数;

mn表示y

AB两站分别设在公路上离中心O多远处,才能使AB最短?并求出最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ) 求曲线在点处的切线方程;

(Ⅱ) 讨论函数的单调性;

(Ⅲ) 设,当时,若对任意的,存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Ptt1),tR,点E是圆上的动点,点F是圆上的动点,则|PF||PE|的最大值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM 5 m,BC 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH

(1)求屋顶面积S关于的函数关系式;

(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当为何值时,总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为等差数列{an}的前n项和,a42S618

1)求an

2)设Tn|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为

求曲线C的直角坐标方程与直线l的极坐标方程;

若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数及如下的4个命题:

关于x的方程个不同的零点;

对于实数,不等式恒成立;

上,方程5个零点;

时,函数的图象与x轴图成的形的面积是4

则以上命题正确的为______把正确命题前的序号填在横线上

查看答案和解析>>

同步练习册答案