已知函数
.
(Ⅰ)当
时,证明函数
只有一个零点;
(Ⅱ)若函数
在区间
上是减函数,求实数
的取值范围
(Ⅱ)![]()
(Ⅰ)当
时,
,其定义域是
∴
…………2分
令
,即
,解得
或
.
,∴
舍去.
当
时,
;当
时,
.
∴ 函数
在区间
上单调递增,在区间
上单调递减
∴ 当x =1时,函数
取得最大值,其值为
.
当
时,
,即
.
∴ 函数
只有一个零点. ……………………6分
(Ⅱ)显然函数
的定义域为![]()
∴
………7分
①当
时,
在区间
上为增函数,不合题意……8分
② 当
时,
等价于
,即![]()
此时
的单调递减区间为
.
依题意,得
解之得
. ………10分
③ 当
时,
等价于
,即![]()
此时
的单调递减区间为
,
∴
得![]()
综上,实数
的取值范围是
…………12分
法二:
①当
时,
在区间
上为增函数,不合题意……8分
②当
时,要使函数
在区间
上是减函数,只需
在区间
上恒成立,![]()
只要
恒成立,
解得
或![]()
综上,实数
的取值范围是
…………12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com