精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x3-$\frac{1}{2}$x2+bx+c,若f(x)在R上是增加的,求实数b的最小值.

分析 求出f(x)的导数,得到导函数f′(x)≥0恒成立,结合二次函数的性质得到△=1-12b≤0,解出b的范围,从而求出b的最小值即可.

解答 解:f′(x)=3x2-x+b,
∵f(x)在(-∞,+∞)上是增函数,
∴f′(x)≥0恒成立.
∴△=1-12b≤0,解得b≥$\frac{1}{12}$,
∴b 的最小值是$\frac{1}{12}$.

点评 本题考查了求函数的单调性问题,考查导数的应用,二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.一个袋中装有四个大小、形状完全相同的小球,小球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机取两个小球,求取出的两个小球的编号之和不小于5的概率;
(Ⅱ)先从袋中随机取一个小球,记此小球的编号为m,将此小球放回袋中,然后再从袋中随机取一个小球,记该小球的编号为n,求n=m+2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lg(3+x)+lg(3-x).
(1)判断f(x)的奇偶性并加以证明;
(2)判断f(x)的单调性(不需要证明);
(3)解关于m的不等式.f(m)-f(m+1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(sin(2x-$\frac{π}{6}$),cos2$\frac{π}{4}$-cos2x),$\overrightarrow{b}$=(1,-2),函数$f(x)=\vec a•\vec b(x∈R)$
(1)求f(x)的单调递增区间;
(2)f(x)图象可以由y=sinx经过怎样的变换而得到?
(3)求在$x∈({-\frac{π}{6},\frac{π}{3}})$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在棱长为2的正方体ABCD-A1B1C1D1中,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点A的距离大于1的概率为1-$\frac{π}{48}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某市一重点中学在2015年高考体检中,有5位同学的身高依次为150,155,x,174,182,单位:cm.已知这5位同学的身高的中位数为164.
(1)求x及这5位同学的身高的平均数;
(2)从以上的5位同学中随机地选2位同学,记他们的身高之差为a(a>0),用<M>表示大于或等于M的最小整数,如:<0.8>=1,<2>=2,<2.1>=3,令X=<$\frac{a}{10}$>,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若a>b>1,且a+b+c=0,则$\frac{c}{a}$的取值范围是(-2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.边长为1的正方体ABCD-A1B1C1D1若将其对角线AC1与平面α垂直,则正方体ABCD-A1B1C1D1在平面α上的投影面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,A=$\frac{π}{4}$,b2sinC=$4\sqrt{2}$sinB,则△ABC的面积为2.

查看答案和解析>>

同步练习册答案