精英家教网 > 高中数学 > 题目详情
(几何证明选讲选做题)已知曲线M:ρ2-2ρcosθ-4ρsinθ+1=0,则圆心M到直线
x=4t+3
y=3t+1
(t为参数)的距离为
2
2
分析:先利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,将极坐标方程ρ2-2ρcosθ-4ρsinθ+1=0,化成直角坐标方程,再消去参数t将直线l的参数方程化成普通方程,最后利用点到直线的距离公式求解即得.
解答:解:曲线M:ρ2-2ρcosθ-4ρsinθ+1=0,化为直角坐标系方程,
x2+y2-2x-4y+1=0,有:(x-1)2+(y-2)2=4,
直线
x=4t+3
y=3t+1
(t为参数)化成直角坐标方程,即直线:3x-4y-5=0,
M到该直线的距离为:d=
|3×1-4×2-5|
5
=2,
则圆心M到直线
x=4t+3
y=3t+1
(t为参数)的距离为 2.
故答案为:2.
点评:本题主要考查参数方程,直线与圆位置关系判断.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(几何证明选讲选做题)
自圆O外一点P引切线与圆切于点A,M为PA中点,过M引割线交圆于B,C两点.
求证:∠MCP=∠MPB.

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲选做题)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,直线MN切⊙O于D,∠MDA=60°,则∠BCD=
150°
150°

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(几何证明选讲选做题)如图,点A,B,C是圆O上的点,且BC=6,∠BAC=120°,则圆O的面积等于
12π
12π

(2)(不等式选讲选做题)若存在实数x满足|x-3|+|x-m|<5,则实数m的取值范围为
(-2,8)
(-2,8)

(3)(极坐标与参数方程选讲选做题)设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为
7
10
10
的点的个数有
2
2
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲选做题)
如图,在Rt△ABC中,∠C=90°,E为AB上一点,以BE为直径作圆O刚好与AC相切于点D,若AB:BC=2:1,  CD=
3
,则圆O的半径长为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(几何证明选讲选做题)
如图,AD为圆O直径,BC切圆O于点E,AB⊥BC,DC⊥BC,AB=4,DC=1,则AD等于
 

查看答案和解析>>

同步练习册答案