10£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=3-\frac{{\sqrt{2}}}{2}t}\\{y=\sqrt{5}+\frac{{\sqrt{2}}}{2}t}\end{array}}$£¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2$\sqrt{5}$sin¦È£®
£¨1£©ÇóÔ²CµÄÖ±½Ç×ø±êϵ·½³Ì£»
£¨2£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA¡¢B£¬ÈôµãPµÄ×ø±êΪ$£¨3£¬\sqrt{5}£©$£¬Çó|PA|+|PB|£®
×¢£º¼«×ø±êϵÓëÖ±½Ç×ø±êϵxoyÈ¡ÏàͬµÄµ¥Î»³¤¶È£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«Öᣮ

·ÖÎö £¨1£©Ö±½ÓÀûÓü«×ø±êÓëÖ±½Ç×ø±êת»¯·¨Ôò£¬»¯¼òÇó½â¼´¿É£®
£¨2£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬ÀûÓòÎÊý·½³Ì²ÎÊýtµÄ¼¸ºÎÒâÒåÍÆ³ö½á¹û¼´¿É£®

½â´ð ½â£º£¨1£©ÓɦÑ=2$\sqrt{5}$sin¦ÈµÃ£ºx2+y2-2$\sqrt{5}y$=0¼´x2+£¨y-$\sqrt{5}$£©2=5£®
£¨2£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³ÌµÃ£º
$£¨3-\frac{\sqrt{2}}{2}t£©^{2}+£¨\frac{\sqrt{2}}{2}t£©^{2}=5$¼´t2-3$\sqrt{2}t$+4=0£®
ÓÉÓÚ¡÷=$£¨3\sqrt{2}£©^{2}-4¡Á4=2£¾0$¹Ê¿ÉÉèt1£¬t2Ϊ·½³ÌµÄÁ½Êµ¸ù
ËùÒÔ$\left\{\begin{array}{l}{t}_{1}+{t}_{2}=3\sqrt{2}\\{t}_{1}•{t}_{2}=4\end{array}\right.$ÓÖÖ±Ïßl¹ýµãP£¨3£¬$\sqrt{5}$£©£®
¹ÊÓÉÉÏʽ¼°tµÄ¼¸ºÎÒâÒåµÃ£º|PA|+|PB|=|t1|+|t2||=t1+t2=3$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒ壬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®£¨1£©Çóº¯Êýg£¨x£©=x2-ax+3ÔÚÇø¼ä[-1£¬1]ÉϵÄ×îСֵ£®
£¨2£©¶Ôº¯Êýf£¨x£©£¨x¡Ê[a£¬b]£©£¬¶¨Òåf¡ä£¨x£©=max{f£¨t£©|a¡Üt¡Üx}£¨x¡Ê[a£¬b]£©£®ÆäÖÐmax{f£¨x£©|x¡ÊD}±íʾº¯Êýf£¨x£©ÔÚDÉϵÄ×î´óÖµ£¬Èôf£¨x£©=x2-1£¨-2¡Üx¡Ü3£©£¬Çóf¡ä£¨x£©£®£¨¿ÉÒÔÖ±½Óд³ö½á¹û£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}+x£¬x£¼0}\\{-{x}^{2}£¬x¡Ý0}\end{array}\right.$£¬Ôòf£¨f£¨1£©£©=0£¬·½³Ìf£¨f£¨x£©£©=1µÄ½âÊÇ-$\frac{\sqrt{2+2\sqrt{5}}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®30.7£¬30.5£¬log30.7µÄ´óС˳ÐòÊÇ30.7£¾30.5£¾log30.7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³¸ßУ¹²ÓÐѧÉú15 000ÈË£¬ÆäÖÐÄÐÉú10 500ÈË£¬Å®Éú4500ÈË£®Îªµ÷²é¸ÃУѧÉúÿÖÜÆ½¾ùÌåÓýÔ˶¯Ê±¼äµÄÇé¿ö£¬²ÉÓ÷ֲã³éÑùµÄ·½·¨£¬ÊÕ¼¯300λѧÉúÿÖÜÆ½¾ùÌåÓýÔ˶¯Ê±¼äµÄÑù±¾Êý¾Ý£¨µ¥Î»£ºÐ¡Ê±£©£®
£¨1£©Ó¦ÊÕ¼¯¶àÉÙλŮÉúµÄÑù±¾Êý¾Ý£¿
£¨2£©¸ù¾ÝÕâ300¸öÑù±¾Êý¾Ý£¬µÃµ½Ñ§ÉúÿÖÜÆ½¾ùÌåÓýÔ˶¯Ê±¼äµÄƵÂÊ·Ö²¼Ö±·½Í¼£¨ÈçͼËùʾ£©£¬ÆäÖÐÑù±¾Êý¾ÝµÄ·Ö×éÇø¼äΪ£º[0£¬2]£¬£¨2£¬4]£¬£¨4£¬6]£¬£¨6£¬8]£¬£¨8£¬10]£¬£¨10£¬12]£®¹À¼Æ¸ÃУѧÉúÿÖÜÆ½¾ùÌåÓýÔ˶¯Ê±¼ä³¬¹ý4СʱµÄ¸ÅÂÊ£®
£¨3£©ÔÚÑù±¾Êý¾ÝÖУ¬ÓÐ60λŮÉúµÄÿÖÜÆ½¾ùÌåÓýÔ˶¯Ê±¼ä³¬¹ý4Сʱ£¬ÇëÍê³ÉÿÖÜÆ½¾ùÌåÓýÔ˶¯Ê±¼äÓëÐÔ±ðÁÐÁª±í£¬²¢ÅжÏÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪ¡°¸ÃУѧÉúµÄÿÖÜÆ½¾ùÌåÓýÔ˶¯Ê±¼äÓëÐÔ±ðÓйء±£®
P£¨K2¡Ýk0£©0.100.050.0100.005
k02.7063.8416.6357.879
¸½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÉèÈ«¼¯U=R£¬A={x|0£¼x£¼2}£¬B={x|x£¼1}£¬ÔòͼÖÐÒõÓ°²¿·Ö±íʾµÄ¼¯ºÏΪ£¨¡¡¡¡£©
A£®{x|x¡Ý1}B£®{x|0¡Üx¡Ü1}C£®{x|1¡Üx£¼2}D£®{x|x¡Ü1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®´ò÷ý²»½öÓ°Ïì±ðÈËÐÝÏ¢£¬¶øÇÒ¿ÉÄÜÓ뻼ijÖÖ¼²²¡Óйأ®±íÊÇÒ»´Îµ÷²éËùµÃµÄÊý¾Ý£¬
£¨1£©½«±¾ÌâµÄ2*2Áª±í¸ñ²¹³äÍêÕû£®
£¨2£©ÓÃÌáʾµÄ¹«Ê½¼ÆË㣬ÿһÍí¶¼´ò÷ýÓ뻼ÐÄÔಡÓйØÂð£¿
Ìáʾ
P£¨K2¡Ýk£©0.1000.0500.010 0.001
k2.7063.8416.63510.828
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
»¼ÐÄÔಡδ»¼ÐÄÔಡºÏ¼Æ
ÿһÍí¶¼´ò÷ý317a=
²»´ò÷ý2128b=
ºÏ¼Æc=d=n=

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÃæÊÇÒ»¸ö2¡Á2ÁÐÁª±í£ºÔò±íÖÐa¡¢b´¦µÄÖµ·Ö±ðΪ£¨¡¡¡¡£©
 y1y2×ܼÆ
x1a2173
x282533
×ܼÆb46 
A£®94£¬96B£®52£¬50C£®52£¬60D£®54£¬52

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚÅ×ÎïÏßy2=4xÉÏÓÐÁ½¶¯µãA£¬B£¬Âú×ãAB=3£¬ÔòÏß¶ÎABÖеãMµÄºá×ø±êµÄ×îСֵΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸