精英家教网 > 高中数学 > 题目详情
若平面向量=(1,x)和=(2x+3,-x)互相平行,其中x∈R,则|-|=( )
A.
B.
C.-2或0
D.2或10
【答案】分析:由于平面向量互相平行,利用两向量平行式的坐标形式的等价条件可以求出x的值,再有向量的减法求出的坐标,利用模长公式即可求得.
解答:解:因为平面向量互相平行,
所以1×(-x)-x×(2x+3)=0⇒x=0,或x=-2,

 
所以
故选:B
点评:此题考查了两向量平行的坐标表示法及方程思想求解未知量x的值,还考查了已知向量的坐标求向量的模.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,x),
b
=(2x+3,-x)(x∈R).
(1)若
a
b
,求x的值;   
(2)若
a
b
,求|
a
-
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

若平面向量
a
=(1,x)和
b
=(2x+3,-x)互相平行,其中x∈R,则|
a
-
b
|=(  )
A、2
5
B、2或2
5
C、-2或0
D、2或10

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知平面向量
a
=(1,x),
b
=(2x+3,-x),x∈R.若
a
b
,求出x的值;
(2)已知|
a
|=3,|
b
|=2,
a
b
所成角为60°,求|2
a
+
b
|的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省天水市高三第三次考试文科数学试卷(解析版) 题型:选择题

若平面向量a=(1,x)和b=(2x+3,-x)互相平行,其中x∈R,

则|a-b|=(   )

A.            B.2或         C.-2或0          D.2或10

 

查看答案和解析>>

科目:高中数学 来源:合肥模拟 题型:单选题

若平面向量
a
=(1,x)和
b
=(2x+3,-x)互相平行,其中x∈R,则|
a
-
b
|=(  )
A.2
5
B.2或2
5
C.-2或0D.2或10

查看答案和解析>>

同步练习册答案