精英家教网 > 高中数学 > 题目详情
已知平面向量
a
=(1,x),
b
=(2x+3,-x)(x∈R).
(1)若
a
b
,求x的值;   
(2)若
a
b
,求|
a
-
b
|.
分析:(1)由
a
b
a
b
=0,我们易构造一个关于x的方程,解方程即可求出满足条件的x的值.
(2)若
a
b
,根据两个向量平行,坐标交叉相乘差为零,构造一个关于x的方程,解方程求出x的值后,分类讨论后,即可得到|
a
-
b
|.
解答:解:(1)∵
a
b

a
b
=(1,x)•(2x+3,-x)=2x+3-x2=0
整理得:x2-2x-3=0
解得:x=-1,或x=3
(2)∵
a
b

∴1×(-x)-x(2x+3)=0
即x(2x+4)=0
解得x=-2,或x=0
当x=-2时,
a
=(1,-2),
b
=(-1,2)
a
-
b
=(2,-4)
∴|
a
-
b
|=2
5

当x=0时,
a
=(1,0),
b
=(3,0)
a
-
b
=(-2,0)
∴|
a
-
b
|=2
故|
a
-
b
|的值为2
5
或2.
点评:本题考查的知识是数量积判断两个平面向量的垂直关系,向量的模,平行向量与共线向量,其中根据“两个向量平行,坐标交叉相乘差为零,两个向量若垂直,对应相乘和为零”构造方程是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面向量
a
=(-1,3x),平面向量
b
=(2,6).若
a
b
平行,则实数x=(  )
A、-
1
9
B、
1
9
C、1
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,2sinθ),
b
=(5cosθ,3).
(1)若
a
b
,求sin2θ的值;
(2)若
a
b
,求tan(θ+
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,-3),
b
=(4,-2),λ
a
+
b
b
垂直,则λ=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,-2),
b
=(2,1),
c
=(-4,-2),则下列说法中错误的是(  )
A、
c
b
B、
a
b
C、对同一平面内的任意向量
d
,都存在一对实数k1,k2,使得
d
=k1
b
+k2
c
D、向量
c
与向量
a
-
b
的夹角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,-2),
b
=(2,1),
c
=(-4,-2),则下列结论中错误的是(  )
A、向量
c
与向量
b
共线
B、若
c
1
a
2
b
(λ1,λ2∈R),则λ1=0,λ2=-2
C、对同一平面内任意向量
d
,都存在实数k1,k2,使得
d
=k1
b
+k2
c
D、向量
a
在向量
b
方向上的投影为0

查看答案和解析>>

同步练习册答案