精英家教网 > 高中数学 > 题目详情
已知平面向量
a
=(1,2sinθ),
b
=(5cosθ,3).
(1)若
a
b
,求sin2θ的值;
(2)若
a
b
,求tan(θ+
π
4
)的值.
分析:(1)通过向量的平行的坐标运算,以及二倍角的正弦函数,直接求出sin2θ的值;
(2)通过向量的垂直,求出tanθ的值,利用两角和的正切函数,直接求解即可.
解答:解:(1)因为
a
b
,所以1×3-2sinθ×5cosθ=0,…3分
即5sin2θ-3=0,所以sin2θ=
3
5
.                          …6分
(2)因为
a
b
,所以1×5cosθ+2sinθ×3=0.              …8分
所以tanθ=-
5
6
.                                        …10分
所以tan(θ+
π
4
)═
tanθ+tan
π
4
1-tanθtan
π
4
=
1
11
.                         …14分.
点评:本题考查向量的数量积的运算,二倍角公式以及两角和的正切函数的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面向量
a
=(-1,3x),平面向量
b
=(2,6).若
a
b
平行,则实数x=(  )
A、-
1
9
B、
1
9
C、1
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,-3),
b
=(4,-2),λ
a
+
b
b
垂直,则λ=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,-2),
b
=(2,1),
c
=(-4,-2),则下列说法中错误的是(  )
A、
c
b
B、
a
b
C、对同一平面内的任意向量
d
,都存在一对实数k1,k2,使得
d
=k1
b
+k2
c
D、向量
c
与向量
a
-
b
的夹角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,-2),
b
=(2,1),
c
=(-4,-2),则下列结论中错误的是(  )
A、向量
c
与向量
b
共线
B、若
c
1
a
2
b
(λ1,λ2∈R),则λ1=0,λ2=-2
C、对同一平面内任意向量
d
,都存在实数k1,k2,使得
d
=k1
b
+k2
c
D、向量
a
在向量
b
方向上的投影为0

查看答案和解析>>

同步练习册答案