精英家教网 > 高中数学 > 题目详情

如图,在梯形,平面平面,四边形是矩形,,点在线段上.

(Ⅰ)求证:平面

(Ⅱ)当为何值时,‖平面?证明你的结论;

(Ⅲ)求二面角的大小.

 

 

 

 

【答案】

(Ⅰ)在梯形ABCD中,∵

∴四边形ABCD是等腰梯形,

,∴

又∵平面平面ABCD,交线为AC,∴平面ACFE.

(Ⅱ)当时,平面BDF. 在梯形ABCD中,设,连结FN,则 

,∴MFAN

∴四边形ANFM是平行四边形. ∴ 

又∵平面BDF平面BDF. ∴平面BDF.

(Ⅲ)取EF中点GEB中点H,连结DG、GH、DH,∵DE=DF,∴ ∵平面ACFE,∴  又∵,∴又∵,∴

是二面角B—EF—D的平面角.

在△BDE

∴在△DGH中,

由余弦定理得即二面角B—EF—D的大小为

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若点M在线段EF上运动,设平MAB与平FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图1,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,CD=6,AD=3,E为CD上一点,且DE=4,过E作EF∥AD交BC于F现将△CEF沿EF折起到△PEF,使∠PED=60°,如图2.
(Ⅰ)求证:PE⊥平面ADP;
(Ⅱ)求异面直线BD与PF所成角的余弦值;
(Ⅲ)在线段PF上是否存在一点M,使DM与平在ADP所成的角为30°?若存在,确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省厦门市高三上学期末理科数学卷 题型:解答题

如图1,在直角梯形ABCD中,AB//CD,E为CD上一点,且DE=4,过E作EF//AD交BC于F现将沿EF折到使,如图2。

(I)求证:PE⊥平面ADP;

(II)求异面直线BD与PF所成角的余弦值;

(III)在线段PF上是否存在一点M,使DM与平在ADP所成的角为?若存在,确定点M的位置;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,当E、F分别在线段AD、BC上,且EF⊥BC,AD=4,CB=6,AE=2,现将梯形ABCD沿EF折叠,使平________面ABFE与平面EFCD垂直.
(1)判断直线AD与BC是否共面,并证明你的结论;
(2)当直线AC与平面EFCD所成角为多少时,二面角A-DC-E的大小是60°.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州市天台县平桥中学高二(上)12月诊断数学试卷(理科)(解析版) 题型:解答题

如图,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若点M在线段EF上运动,设平MAB与平FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

同步练习册答案