精英家教网 > 高中数学 > 题目详情

如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,当E、F分别在线段AD、BC上,且EF⊥BC,AD=4,CB=6,AE=2,现将梯形ABCD沿EF折叠,使平________面ABFE与平面EFCD垂直.
(1)判断直线AD与BC是否共面,并证明你的结论;
(2)当直线AC与平面EFCD所成角为多少时,二面角A-DC-E的大小是60°.

证明:(1)直线AD与BC是异面直线,(1分)
法一(反证法)假设直线AD与BC共面为α.
∵EF⊥BC,∠ABC=90°,
∴EF∥AB,EF?α,AB?α.
∴EF∥α,又EFCD∩α=CD
∴EF∥CD.
∴CD∥AB
这与ABCD为梯形矛盾.故假设不成立.即直线AD与BC是异面直线.
法二:在FC上取一点M,使FM=ED,又FM∥ED,
∴EFMD是平行四边形.
∴DM∥EF,又EF∥AB
∴DM∥AB,
则DM,AB确定平面α,B∈α,C∉α,AD?α
∴BC与AD是异面直线.
解:(2)延长CD,EF,相交于N,AE=2,AD=4,BC=6,
∴ED=2,CF=4,设AB=x,则△NDE中,NE=x,
∵AE⊥EF,平面ABFE⊥平面EFCD,
∴AE⊥平面EFCD.过E作EH⊥DN于H,连接AH,
则AH⊥DN.
∴∠AHE是二面角A-DC-E的平面角,
则∠AHE=60°.
∵NE=x,DE=2
∴HE=,AE=2,
∴tan∠AHE===
∴x=
此时在△EFC中,EF=,FC=4
∴EC=3,.又AE⊥平面EFCD,
∴∠ACE是直线AC与平面EFCD所成的角,
∴tan∠ACE==
即当直线AC与平面EFCD所成角为arctan时,二面角A-DC-E的大小为60°.
分析:(1)直线AD与BC是异面直线,我们可以用两种不同的方法来证明结论.
反证法:假直线AD与BC共面,由线面平行的性质定理及平行公理,我们可以得到CD∥AB,这与已知中ABCD为梯形矛盾,进而得到直线AD与BC是异面直线;
直接法:在FC上取一点M,使FM=ED,根据平行四边形的判定及性质,可得DM∥AB,进而根据异面直线判定定理,得到结论;
(2)延长CD,EF,相交于N,设AB=x,则△NDE中,NE=x,过E作EH⊥DN于H,连接AH,可证得∠AHE是二面角A-DC-E的平面角,由已知中二面角A-DC-E的大小是60°我们可以构造方程求出x值,构造∠ACE是直线AC与平面EFCD所成的角,解三角形ACE即可求出直线AC与平面EFCD所成角,进而得到答案.
点评:本题考查的知识点是二面角的平面角及求法,异面直线的判定,其中(1)中反证法关键是由假设结论不成立,推理后得到矛盾,直接法是要熟练掌握异面直线的判定定理,(2)的关键是找出∠AHE是二面角A-DC-E的平面角,∠ACE是直线AC与平面EFCD所成的角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a.
(Ⅰ)求证:平面SAB⊥平面SAD;
(Ⅱ)设SB的中点为M,且DM⊥MC,试求出四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.点E、F分别是PC、BD的中点,现将△PDC沿CD折起,使PD⊥平面ABCD,
(1)求证:EF∥平面PAD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,动点P在BCD内运动(含边界),设
AP
AD
AB
,则α+β的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P为CD的中点,则
PA
PB
的值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分别为线段CD、AB上的点,且EF∥AD.将梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD与平面ADEF所成角正切值为
2
2

(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

同步练习册答案