精英家教网 > 高中数学 > 题目详情
△ABC的三个内角A,B,C所对的边分别为a,b,c,a=1,B=45°,向量
m
=(-1,1),
n
=(cosBcosC,sinBsinC-
3
2
,且
m
n

(Ⅰ)求A的大小;   
(Ⅱ)求△ABC的面积.
考点:正弦定理,余弦定理
专题:解三角形
分析:(I)由
m
n
,利用两个向量垂直的性质,两个向量的数量积公式求得cos(B+C)=-
3
2
,再根据cos(B+C)=-cosA,求得A的值.
(II)由条件求得C=105°,利用两角和的正弦公式求得cos105°的值,再利用正弦定理求得c的值,可得△ABC的面积
1
2
ac•sinB的值.
解答: 解:(I)∵且
m
n
,∴
m
n
=-cosBcosC+sinBsinC-
3
2
=0,即cosBcosC-sinBsinC=-
3
2
,∴cos(B+C)=-
3
2

∵A+B+C=180°,∴cos(B+C)=-cosA,∴cosA=
3
2
,所以A=30°.
(II)∵A=30°,a=1,B=45°,∴C=105°.
sin105°=sin(60°+45°)=sin60°cos45°+cos60°sin45°=
6
+
2
4

由正弦定理得c=
asinC
sinA
=
1•sin105°
sin30°
=
6
+
2
2

S△ABC=
1
2
acsinB=
1
2
×1×
6
+
2
2
×
2
2
=
3
+1
4
点评:本题主要考查两个向量垂直的性质,两个向量的数量积公式,以及正弦定理、两角和的正弦公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.求d,an;     
(2)已知等差数列{bn}的前n项和为Sn,b5=5,S5=15,则数列{
1
bnbn+1
}100项和为.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=2,AD=
3
,P是AB的中点,该矩形有一内接Rt△PQR,P为直角顶点,Q、R分别落在线段BC和线段AD上,记Rt△PQR的面积为S.
(Ⅰ)设∠BPQ为α,将S表示成α的函数关系式,并求S的最大值;
(Ⅱ)设BQ=x,将S表示成x的函数关系式.并求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

由下面四个图形中的点数分别给出了四个数列的前四项,将每个图形的层数增加可得到这四个数列的后继项.按图中多边形的边数依次称这些数列为“三角形数列”、“四边形数列”…,将构图边数增加到n可得到“n边形数列”,记它的第r项为P(n,r),

(1)求使得P(3,r)>36的最小r的取值;
(2)问3725是否为“五边形数列”中的项,若是,为第几项;若不是,说明理由;
(3)试推导P(n,r)关于n、r的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(-1,0)在动直线2ax+(a+c)y+2c=0(a∈R,c∈R)上的射影为M,已知点N(3,3),则线段MN长度的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2+2x+a=0有两个相异的实根;q:函数f(x)=2x-ax-2有两个零点,且p∨q为真,p∧q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则
1
a
+
4
b
 的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(1)已知函数f(x)=sin(x+φ)(x∈R,0<φ<
π
2
)
,试判断f(x)是否为“局部奇函数”?并说明理由;
(2)设f(x)=2x+m是定义在[-1,1]上的“局部奇函数”,求实数m的取值范围;
(3)若f(x)=4x-m2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=sinx-
3
cosx的图象向左平移m(m>0)个单位,若所得图象对应的函数为偶函数,则m的最小值是(  )
A、
3
B、
π
3
C、
π
8
D、
6

查看答案和解析>>

同步练习册答案