精英家教网 > 高中数学 > 题目详情
已知点B(0,1),A,C为椭圆C:
x2
a2
+y2
=1(a>1)上的两点,△ABC是以B为直角顶点的直角三角形.
(1)△ABC能否为等腰三角形?若能,这样的三角形有几个?
(2)当a=2时,求线段AC的中垂线l在x轴上截距的取值范围.
(1)不妨设lAB:y=kx+1(k>0),lBC:y=-
1
k
x+1

y=kx+1
x2
a2
+y2=1
,得(1+a2k2)x2+2ka2x=0,…①
|AB|=
1+k2
|xA-xB|=
1+k2
2ka2
1+a2k2

同理可得:|BC|=
1+
1
k2
2a2
k
1+
a2
k2
=
1+k2
2a2
k2+a2

由|AB|=|BC|得,k3-a2k2+a2k-1=0,
即(k-1)[k2+(1-a2)k+1]=0,解得k=1或k2+(1-a2)k+1=0.
对于k2+(1-a2)k+1=0,
由(1-a22-4=0,得a=
3
,此时方程的根k=1;
当1<a
3
时,方程k2+(1-a2)k+1=0无实根;
当a>
3
时,方程k2+(1-a2)k+1=0有两个不等实数根.
∴当a>
3
时,这样的三角形有3个;当1<a≤
3
时这样的三角形有1个;
(2)由a=2,可得椭圆的方程为
x2
4
+y2=1

直线AC与x轴垂直时不符合题意.
①直线AC的斜率为0时,线段AC的垂直平分线为y轴,此时线段AC的垂直平分线在x轴上的截距为0.
②设直线AC的方程为my=x+t.(m≠0),A(x1,y1),C(x2,y2).
联立
my=x+t
x2+4y2=4
,化为(4+m2)y2-2mty+t2-4=0.
∵直线AC与椭圆有两个交点,∴△=4m2t2-4(4+m2)(t2-4)>0,化为4+m2>t2.(*)
y1+y2=
2mt
4+m2
y1y2=
t2-4
4+m2
.(**)
设线段AC的中点M(x0,y0),则y0=
y1+y2
2
=
mt
4+m2
,x0=my0-t=
-4t
4+m2

∴M(
-4t
4+m2
mt
4+m2
)

∵AB⊥BC,
BA
BC
=(x1,y1-1)•(x2,y2-1)=x1x2+(y1-1)(y2-1)
=(my1-t)(my2-t)+(y1-1)(y2-1)=(m2+1)y1y2-(mt+1)(y1+y2)+t2+1=0.
把(**)代入上式可得:
(m2+1)(t2-4)
4+m2
-
2mt(mt+1)
4+m2
+t2+1=0,
化为 5t2-2mt-3m2=0,即(5t+3m)(t-m)=0.
解得t=m或t=-
3m
5

当t=m时,直线AC化为m(y-1)=x过点(0,1),舍去.
t=-
3m
5
时,满足(*).
又线段AC的垂直平分线为:y-
mt
4+m2
=-m(x+
4t
4+m2
)

令y=0,得x=
-3t
4+m2

t=-
3m
5
代入上式可得x=
9m
5(4+m2)
=
9
5
4
m
+m

当m>0时,0<x≤
9
20

当m<0时,-
9
20
≤m<0

综上可知:线段AC的中垂线l在x轴上截距的取值范围是[-
9
20
9
20
]
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
a2
+
y2
3
=1
(a
3
)的离心率e=
1
2
.直线x=t(t>0)与曲线 E交于不同的两点M,N,以线段MN 为直径作圆 C,圆心为 C.
(1)求椭圆E的方程;
(2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定点A(2,0),它与抛物线y2=x上的动点P连线的中点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y=x2上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线C:y2=2px(p>0)的焦点为F,过F且斜率为1的直线l与抛物线C相交于A,B两点,若线段AB的中点到抛物线C准线的距离为4,则p的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知离心率为
3
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>o)过点M(2,1),O为坐标原点,平行于OM的直线l交椭圆于C不同的两点A,B.
(1)求椭圆的C方程.
(2)证明:若直线MA,MB的斜率分别为k1、k2,求证:k1+k2=0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
3
2
,且过点(
3
1
2

(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx+m(k≠0,m>0)与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为(  )
A.5B.
5
2
C.
3
2
D.
17
8

查看答案和解析>>

同步练习册答案