精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px(p>0)的焦点为F,过F且斜率为1的直线l与抛物线C相交于A,B两点,若线段AB的中点到抛物线C准线的距离为4,则p的值为(  )
A.1B.2C.3D.4
设A(x1,y1),B(x2,y2),则
y12=2px1,①
y22=2px2,②
①-②,得:(y1-y2)(y1+y2)=2p(x1-x2),
y1-y2
x1-x2
•(y1+y2)=2p,
∵过抛物线C:y2=2px(p>0)的焦点F且斜率为1的直线l与抛物线C相交于A,B两点,
y1-y2
x1-x2
=1,AB方程为:y=x-
p
2

y1+y2
2
为AB中点纵坐标,
∴y1+y2=2p,
y1=x1-
p
2
y2=x2-
p
2

∴y1+y2=x1+x2-p,
∴x1+x2=y1+y2+p,
x1+x2
2
=
(y1+y2+p)
2
=
3p
2

∴AB中点横坐标为
3p
2

∵线段AB的中点到抛物线C准线的距离为4,
p
2
+
3p
2
=4
,解得p=2.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知点(1,1)是椭圆
x2
4
+
y2
2
=1
某条弦的中点,则此弦所在的直线方程为:______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(备用题)如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)上的点M(1,
3
2
)
到它的两焦点F1、F2的距离之和为4,A、B分别是它的左顶点和上顶点.
(Ⅰ)求此椭圆的方程及离心率;
(Ⅱ)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,线段AB的两个端点A、B分别分别在x轴、y轴上滑动,|AB|=5,点M是AB上一点,且|AM|=2,点M随线段AB的运动而变化.
(1)求点M的轨迹方程;
(2)设F1为点M的轨迹的左焦点,F2为右焦点,过F1的直线交M的轨迹于P,Q两点,求S△PQF2的最大值,并求此时直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点B(0,1),A,C为椭圆C:
x2
a2
+y2
=1(a>1)上的两点,△ABC是以B为直角顶点的直角三角形.
(1)△ABC能否为等腰三角形?若能,这样的三角形有几个?
(2)当a=2时,求线段AC的中垂线l在x轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,椭圆C上任意一点到椭圆两焦点的距离和为6.求椭圆C的方程;
(2)直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A、B.求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,右焦点为(2
2
,0).斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(Ⅰ)求椭圆G的方程;
(Ⅱ)求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆┍的方程为
x2
a2
+
y2
b2
=1(a>b>0),点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
PM
=
1
2
PA
+
PB
),求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=-
b2
a2
,证明:E为CD的中点;
(3)对于椭圆┍上的点Q(acosθ,bsinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足
PP1
+
PP2
=
PQ
,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线y=kx+1与曲线x=
1-4y2
有两个不同的交点,则k的取值范围是______.

查看答案和解析>>

同步练习册答案