精英家教网 > 高中数学 > 题目详情
已知椭圆┍的方程为
x2
a2
+
y2
b2
=1(a>b>0),点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
PM
=
1
2
PA
+
PB
),求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=-
b2
a2
,证明:E为CD的中点;
(3)对于椭圆┍上的点Q(acosθ,bsinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足
PP1
+
PP2
=
PQ
,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值范围.
(1)设M(x,y)
PM
=
1
2
PA
+
PB
),
∴2(x+a,y-b)=(a,-2b)+(2a,-b)
2(x+a)=3a
2(y-b)=-3b

解得x=
a
2
y=-
b
2

M点坐标为(
a
2
,-
b
2

(2)由方程组
y=k1x+p
x2
a2
+
y2
b2
=1
,消y得方程(a2k′1+b2)x2+2a2k1px+a2(p2-b2)=0,
因为直线l1:y=k1x+p交椭圆于C、D两点,所以△>0,即a2k12+b2-p2>0,
设C(x1,y1)、D(x2,y2),CD中点坐标为(x0,y0),
则x0=
x1+x2
2
=-
a2k1p
a2
k21
+b2
,y0=k1x0+p=
b2p
a2
k21
+b2
,由方程组
y=k1x+p
y=k2x
,消y得方程(k2-k1)x=p,
又因为k2=-
b2
a2k1
,所以x=
p
k2-k1
=x0,y=k2x=y0
故E为CD的中点;
(3)求作点P1、P2的步骤:
1°求出PQ的中点E(-
a(1-cosθ)
2
b(1+sinθ)
2
),
2°求出直线OE的斜率k2=
b(1+sinθ)
2
a(1-cosθ)
2
=
b(1+sinθ)
a(1-cosθ)

3°由
PP1
+
PP2
=
PQ
,知E为CD的中点,根据(2)可得CD的斜率k1=
b(1-cosθ)
a(1+sinθ)

4°从而得直线P1P2的方程:y-
b(1+sinθ)
2
=
b(1-cosθ)
a(1+sinθ)
(x+
a(1-cosθ)
2
),
5°将直线CD与椭圆Γ的方程联立,方程组的解即为点P1、P2的坐标.
欲使P1、P2存在,必须点E在椭圆内,
所以
(1-cosθ)2
4
+
(1+sinθ)2
4
<1,化简得sinθ-cosθ<
1
2
,∴sin(θ-
π
4
)<
2
4

又0<q<p,所以-
π
4
<θ-
π
4
<arcsin
2
4

故q的取值范围是(0,
π
4
+arcsin
2
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线C:y2=2px和⊙M:(x-4)2+y2=1,过抛物线C上一点H(x0,y0)作两条直线与⊙M相切于A、B两点,分别交抛物线为E、F两点,圆心点M到抛物线准线的距离为
17
4

(1)求抛物线C的方程;
(2)当∠AHB的角平分线垂直x轴时,求直线EF的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线C:y2=2px(p>0)的焦点为F,过F且斜率为1的直线l与抛物线C相交于A,B两点,若线段AB的中点到抛物线C准线的距离为4,则p的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知点P(a,b),A(x1,y1),B(x2,y2)均在抛物线y2=2px(p>0)上,PA,PB与x轴分别交于C,D两点,且PC=PD,则y1+y2的值为…(  )
A.-2aB.2bC.2pD.-2b

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
3
2
,且过点(
3
1
2

(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx+m(k≠0,m>0)与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:
x2
25
+
y2
16
=1
,过点(3,0)的且斜率为
4
5
的直线被C所截线段的中点坐标为(  )
A.(
1
2
6
5
)
B.(
1
2
,-
6
5
)
C.(
3
2
6
5
)
D.(
3
2
,-
6
5
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点M(2,0)、N(-2,0),平面上动点P满足由|
MN
|•|
MP
|+
MN
MP
=0

(1)求动点P的轨迹C的方程.
(2)是否存在实数m使直线x+my-4=0(m∈R)与曲线C交于A、B两点,且OA⊥OB?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理科)一动圆过定点P(0,1),且与定直线l:y=-1相切.
(1)求动圆圆心C的轨迹方程;
(2)若(1)中的轨迹上两动点记为A(x1,y1),B(x2,y2),且x1x2=-16.
①求证:直线AB过一定点,并求该定点坐标;
②求
1
|PA|
+
1
|PB|
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P(2,1),若抛物线y2=4x的一条弦AB恰好是以P为中点,则弦AB所在直线方程是______.

查看答案和解析>>

同步练习册答案