精英家教网 > 高中数学 > 题目详情
(理科)一动圆过定点P(0,1),且与定直线l:y=-1相切.
(1)求动圆圆心C的轨迹方程;
(2)若(1)中的轨迹上两动点记为A(x1,y1),B(x2,y2),且x1x2=-16.
①求证:直线AB过一定点,并求该定点坐标;
②求
1
|PA|
+
1
|PB|
的取值范围.
(1)由已知可得:点C到P的距离与到定直线l的距离相等.
所以圆心C的轨迹是以p为焦点,定直线l为准线的抛物线,
∴所求抛物线的方程为:x2=4y.
(2)①设AB:y=kx+b,由
y=kx+b
x2=4y
,消去y得:x2-4kx-4b=0.
∴x1+x2=4k.x1x2=-4b,∵x1x2=-16,
∴b=4,∴直线AB过定点(0,4).
②由抛物线的定义可知:|PA|=y1+1,|PB|=y2+1,
1
|PA|
+
1
|PB|
=
1
y1+1
+
1
y2+1
=
y1+y2+2
y1y2+y1+y2+1

y1=kx1+4,y2=kx2+4,x1+x2=4k.x1x2=-16,
1
|PA|
+
1
|PB|
=
k(x1+x2)+10
k2x1x2+5k(x1+x2)+25
=
4k2+10
4k2+25
=1-
15
4k2+25
∈[
2
5
,1)

∴所求
1
|PA|
+
1
|PB|
的取值范围是[
2
5
,1)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,线段AB的两个端点A、B分别分别在x轴、y轴上滑动,|AB|=5,点M是AB上一点,且|AM|=2,点M随线段AB的运动而变化.
(1)求点M的轨迹方程;
(2)设F1为点M的轨迹的左焦点,F2为右焦点,过F1的直线交M的轨迹于P,Q两点,求S△PQF2的最大值,并求此时直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆┍的方程为
x2
a2
+
y2
b2
=1(a>b>0),点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
PM
=
1
2
PA
+
PB
),求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=-
b2
a2
,证明:E为CD的中点;
(3)对于椭圆┍上的点Q(acosθ,bsinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足
PP1
+
PP2
=
PQ
,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线顶点在原点,圆x2+y2=4x的圆心是抛物线的焦点,直线l过抛物线的焦点,且斜率为2,直线l交抛物线与圆依次为A、B、C、D四点.

(1)求抛物线的方程.
(2)求|AB|+|CD|的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2px(p>0)的焦点F的直线与抛物线交于A,B两点,抛物线准线与x轴交于C点,若∠CBF=90°,则|AF|-|BF|的值为(  )
A.
p
2
B.pC.
3p
2
D.2p

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
2
+
y2
=1
上的点到直线2x-y=7距离最近的点的坐标为(  )
A.(-
4
3
1
3
B.(
4
3
,-
1
3
C.(-
4
3
17
3
D.(
4
3
,-
17
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线y=kx+1与曲线x=
1-4y2
有两个不同的交点,则k的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线E的渐近线方程为y=±
4
3
x
,且经过点(2
3
4
3
3
)

(1)求双曲线E的方程;
(2)F1,F2为双曲线E的两个焦点,P为双曲线上一点,若|PF1|•|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,长轴端点与短轴端点间的距离为
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(0,4)的直线l与椭圆C交于两点E,F,O为坐标原点,若OE⊥OF,求直线l的斜率.

查看答案和解析>>

同步练习册答案