精英家教网 > 高中数学 > 题目详情
椭圆
x2
2
+
y2
=1
上的点到直线2x-y=7距离最近的点的坐标为(  )
A.(-
4
3
1
3
B.(
4
3
,-
1
3
C.(-
4
3
17
3
D.(
4
3
,-
17
3
设与直线2x-y=7平行且与椭圆
x2
2
+
y2
=1
相切的直线l的方程为:2x-y=t,
联立
2x-y=t
x2
2
+y2=1
,化为9x2-8tx+2t2-2=0.(*)
∴△=64t2-36(2t2-2)=0,化为t2=9,解得t=±3.
取t=3,代入(*)可得:9x2-24x+16=0,解得x=
4
3
,∴y=
4
3
-3
=-
1
3

∴椭圆
x2
2
+
y2
=1
上的点到直线2x-y=7距离最近的点的坐标为(
4
3
,-
1
3
)

故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点F(1,0),直线L:x=-1,P为平面上的动点,过点P作直线L的垂线,垂足为Q,且
QP
QF
=
FP
FQ

(1)求点P的轨迹C的方程;
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
FA
FB
<0
?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:
x2
25
+
y2
16
=1
,过点(3,0)的且斜率为
4
5
的直线被C所截线段的中点坐标为(  )
A.(
1
2
6
5
)
B.(
1
2
,-
6
5
)
C.(
3
2
6
5
)
D.(
3
2
,-
6
5
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点A在直线l:x=1上,点C的坐标为(-1,0),经过点A垂直于直线l的直线,交线段AC的垂直平分线于点P.求点P的轨迹.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理科)一动圆过定点P(0,1),且与定直线l:y=-1相切.
(1)求动圆圆心C的轨迹方程;
(2)若(1)中的轨迹上两动点记为A(x1,y1),B(x2,y2),且x1x2=-16.
①求证:直线AB过一定点,并求该定点坐标;
②求
1
|PA|
+
1
|PB|
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,⊙O:x2+y2=16,A(-2,0),B(2,0)为两定点,l是⊙O的一条动切线,若过A,B两点的抛物线以直线l为准线,则抛物线焦点所在的轨迹是(  )
A.双曲线B.椭圆C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
C:的左右焦点为F1,F2,离心率为e,直线l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,且
AM
=
3
4
AB

(1)计算椭圆的离心率e
(2)若直线l向右平移一个单位后得到l′,l′被椭圆C截得的弦长为
5
4
,则求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线y2=8x的准线与x轴交于点Q,若过Q点的直线l与抛物线有公共点,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:
x2
4
+
y2
m
=1(0<m<4)的左顶点为A,M是椭圆C上异于点A的任意一点,点P与点A关于点M对称.
(1)若点P的坐标为(4,3),求m的值;
(2)若椭圆C上存在点M,使得OP⊥OM,求实数m的最大值.

查看答案和解析>>

同步练习册答案