精英家教网 > 高中数学 > 题目详情
已知动点A在直线l:x=1上,点C的坐标为(-1,0),经过点A垂直于直线l的直线,交线段AC的垂直平分线于点P.求点P的轨迹.
依题意可知|PC|=|PA|,根据抛物线的定义可知,
点P的轨迹是以C(-1,0)为焦点,L:x=1为准线的抛物线.
∴p=2,
∴抛物线的方程为:y2=-8x.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(2,0),且离心率为
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点N(
2
,0)且斜率为
6
3
的直线l与椭圆C交于A,B两点,求证:
OA
OB
=0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知点A(-1,0)、B(1,0),动点C满足条件:△ABC的周长为2+2
2
.记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)经过点(0,
2
)且斜率为k的直线l与曲线W有两个不同的交点P和Q,求k的取值范围;
(Ⅲ)已知点M(
2
,0
),N(0,1),在(Ⅱ)的条件下,是否存在常数k,使得向量
OP
+
OQ
MN
共线?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线C:y2=8x的焦点为F.椭圆Σ的中心在坐标原点,离心率e=
1
2
,并以F为一个焦点.
(1)求椭圆Σ的标准方程;
(2)设A1A2是椭圆Σ的长轴(A1在A2的左侧),P是抛物线C在第一象限的一点,过P作抛物线C的切线,若切线经过A1,求证:tan∠A1PA2=
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线顶点在原点,圆x2+y2=4x的圆心是抛物线的焦点,直线l过抛物线的焦点,且斜率为2,直线l交抛物线与圆依次为A、B、C、D四点.

(1)求抛物线的方程.
(2)求|AB|+|CD|的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|.
(1)求此椭圆的方程;
(2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
2
+
y2
=1
上的点到直线2x-y=7距离最近的点的坐标为(  )
A.(-
4
3
1
3
B.(
4
3
,-
1
3
C.(-
4
3
17
3
D.(
4
3
,-
17
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P是圆F1(x+
3
)2+y2=16
上任意一点,点F2与点F1关于原点对称.线段PF2的中垂线与PF1交于M点.
(1)求点M的轨迹C的方程;
(2)设轨迹C与x轴的两个左右交点分别为A,B,点K是轨迹C上异于A,B的任意一点,KH⊥x轴,H为垂足,延长HK到点Q使得HK=KQ,连接AQ延长交过B且垂直于x轴的直线l于点D,N为DB的中点.试判断直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆方程为x2+
y2
4
=1
,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,点P满足
OP
=
1
2
(
OA
+
OB
)
,点N的坐标为(
1
2
1
2
)
,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)|
NP
|
的最小值与最大值.

查看答案和解析>>

同步练习册答案