精英家教网 > 高中数学 > 题目详情
已知点P是圆F1(x+
3
)2+y2=16
上任意一点,点F2与点F1关于原点对称.线段PF2的中垂线与PF1交于M点.
(1)求点M的轨迹C的方程;
(2)设轨迹C与x轴的两个左右交点分别为A,B,点K是轨迹C上异于A,B的任意一点,KH⊥x轴,H为垂足,延长HK到点Q使得HK=KQ,连接AQ延长交过B且垂直于x轴的直线l于点D,N为DB的中点.试判断直线QN与以AB为直径的圆O的位置关系.
(1)由题意得,F1(-
3
,0),F2(
3
,0)
(1分)
圆F1的半径为4,且|MF2|=|MP|(2分)
从而|MF1|+|MF2|=|MF1|+|MP|=4>|F1F2|=2
3
(3分)
∴点M的轨迹是以F1、F2为焦点的椭圆,其中长轴2a=4,焦距2c=2
3

则短半轴b=
a2-c2
=
4-3
=1
,(4分)
椭圆方程为:
x2
4
+y2=1
(5分)
(2)设K(x0,y0),则
x02
4
+y02=1

∵HK=KQ,∴Q(x0,2y0).∴OQ=
x02+(2y02)
=2
(6分)
∴Q点在以O为圆心,2为半径的圆上.即Q点在以AB为直径的圆O上.(7分)
又A(-2,0),∴直线AQ的方程为y=
2y0
x0+2
(x+2)
.(8分)
令x=2,得D(2,
8y0
x0+2
)
.(9分)
又B(2,0),N为DB的中点,∴N(2,
4y0
x0+2
)
.(10分)
OQ
=(x0,2y0)
NQ
=(x0-2,
2x0y0
x0+2
)
.(11分)
OQ
NQ
=x0(x0-2)+2y0
2x0y0
x0+2
=x0(x0-2)+
4x0y02
x0+2
=x0(x0-2)+
x0(4-x02)
x0+2

=x0(x0-2)+x0(2-x0)=0.(13分)
OQ
NQ
.∴直线QN与圆O相切.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,双曲线
x2
a2
-
y2
b2
=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:
(Ⅰ)双曲线的离心率e=______;
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值
S1
S2
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点A在直线l:x=1上,点C的坐标为(-1,0),经过点A垂直于直线l的直线,交线段AC的垂直平分线于点P.求点P的轨迹.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,⊙O:x2+y2=16,A(-2,0),B(2,0)为两定点,l是⊙O的一条动切线,若过A,B两点的抛物线以直线l为准线,则抛物线焦点所在的轨迹是(  )
A.双曲线B.椭圆C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
C:的左右焦点为F1,F2,离心率为e,直线l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,且
AM
=
3
4
AB

(1)计算椭圆的离心率e
(2)若直线l向右平移一个单位后得到l′,l′被椭圆C截得的弦长为
5
4
,则求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点(0,1)引直线与双曲线x2-y2=1只有一个公共点,这样的直线共有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线y2=8x的准线与x轴交于点Q,若过Q点的直线l与抛物线有公共点,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点为(
2
,0)
,且长轴长为短轴长的
3
倍.
(1)求椭圆的标准方程;
(2)设椭圆的下顶点为A,且椭圆与直线y=kx+m(k≠0)相交于不同的两点M,N.当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
4
+
y2
3
=1
,直线l过点M(m,0).
(Ⅰ)若直线l交y轴于点N,当m=-1时,MN中点恰在椭圆C上,求直线l的方程;
(Ⅱ)如图,若直线l交椭圆C于A,B两点,当m=-4时,在x轴上是否存在点p,使得△PAB为等边三角形?若存在,求出点p坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案