精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
C:的左右焦点为F1,F2,离心率为e,直线l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,且
AM
=
3
4
AB

(1)计算椭圆的离心率e
(2)若直线l向右平移一个单位后得到l′,l′被椭圆C截得的弦长为
5
4
,则求椭圆C的方程.
(1)y=ex+a,∴A(-
a
e
,0),B(0,a)
y=ex+a
x2
a2
+
y2
b2
=1
,∴
x=-c
y=
b2
a
∴M(-c,
b2
a
),由
AM
=
3
4
AB
,得
(-c+
a
e
b2
a
)=
3
4
a
e
,a),即
a
e
-c=
3
4
a
e
b2
a
=
3
4
a
∴e2=1-
3
4
=
1
4
,∴e=
1
2

(2)∵e=
1
2
,设椭圆的方程为3x2+4y2=3a2,l:y=
1
2
x-
1
2
+a
3x2+4y2=3a2
y=
1
2
x-
1
2
+a
消y,得4x2+(4a-2)x+a2-4a+1=0.设l交椭圆于B(x1,y1),C(x2,y2
∴x1+x2=-
4a-2
4
,x1x2=
a2-4a+1
4


∴l=
1+k2
(x1+x2)2-4x1x2
=
5
4
12a-3
4
=
5
4

∴a=
2
3
∴椭圆的方程为
x2
4
9
+
y2
1
3
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,椭圆C上任意一点到椭圆两焦点的距离和为6.求椭圆C的方程;
(2)直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A、B.求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线顶点在原点,圆x2+y2=4x的圆心是抛物线的焦点,直线l过抛物线的焦点,且斜率为2,直线l交抛物线与圆依次为A、B、C、D四点.

(1)求抛物线的方程.
(2)求|AB|+|CD|的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
2
+
y2
=1
上的点到直线2x-y=7距离最近的点的坐标为(  )
A.(-
4
3
1
3
B.(
4
3
,-
1
3
C.(-
4
3
17
3
D.(
4
3
,-
17
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线y=kx+1与曲线x=
1-4y2
有两个不同的交点,则k的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P是圆F1(x+
3
)2+y2=16
上任意一点,点F2与点F1关于原点对称.线段PF2的中垂线与PF1交于M点.
(1)求点M的轨迹C的方程;
(2)设轨迹C与x轴的两个左右交点分别为A,B,点K是轨迹C上异于A,B的任意一点,KH⊥x轴,H为垂足,延长HK到点Q使得HK=KQ,连接AQ延长交过B且垂直于x轴的直线l于点D,N为DB的中点.试判断直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线E的渐近线方程为y=±
4
3
x
,且经过点(2
3
4
3
3
)

(1)求双曲线E的方程;
(2)F1,F2为双曲线E的两个焦点,P为双曲线上一点,若|PF1|•|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右两个焦点,A,B为两个顶点,已知椭圆C上的点到F1,F2两点的距离之和为4且b=
3

(1)求椭圆C的方程和焦点坐标;
(2)过椭圆C的焦点F2作AB的平行线交椭圆于P,Q两点,求△F1PQ的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1,F2,离心率为e.直线l:y=ex+a与x轴、y轴分别交于A,B两点.
(1)求证:直线l与双曲线C只有一个公共点;
(2)设直线l与双曲线C的公共点为M,且
AM
AB
,证明:λ+e2=1;
(3)设P是点F1关于直线l的对称点,当△PF1F2为等腰三角形时,求e的值.

查看答案和解析>>

同步练习册答案