精英家教网 > 高中数学 > 题目详情
若直线y=kx+1与曲线x=
1-4y2
有两个不同的交点,则k的取值范围是______.
曲线x=
1-4y2
的形状是椭圆x2+4y2=1的右半部分
直线y=kx+1是过定点(0,1),斜率为k的动直线,
数形结合可知当直线与椭圆x2+4y2=1的右半部分相切时,斜率最大,此时将直线顺时针旋转至与y轴重合时,直线y=kx+1与曲线x=
1-4y2
有两个不同的交点,
将y=kx+1代入x2+4y2=1得(1+4k2)x2+8kx+3=0,由△=64k2-12(1+4k2)=0,得k=-
3
2

∴直线y=kx+1与曲线x=
1-4y2
有两个不同的交点时k的取值范围是(-∞,-
3
2

故正确答案为(-∞,-
3
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知抛物线C:y2=2px(p>0)的焦点为F,过F且斜率为1的直线l与抛物线C相交于A,B两点,若线段AB的中点到抛物线C准线的距离为4,则p的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点M(2,0)、N(-2,0),平面上动点P满足由|
MN
|•|
MP
|+
MN
MP
=0

(1)求动点P的轨迹C的方程.
(2)是否存在实数m使直线x+my-4=0(m∈R)与曲线C交于A、B两点,且OA⊥OB?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理科)一动圆过定点P(0,1),且与定直线l:y=-1相切.
(1)求动圆圆心C的轨迹方程;
(2)若(1)中的轨迹上两动点记为A(x1,y1),B(x2,y2),且x1x2=-16.
①求证:直线AB过一定点,并求该定点坐标;
②求
1
|PA|
+
1
|PB|
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为(  )
A.5B.
5
2
C.
3
2
D.
17
8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
C:的左右焦点为F1,F2,离心率为e,直线l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,且
AM
=
3
4
AB

(1)计算椭圆的离心率e
(2)若直线l向右平移一个单位后得到l′,l′被椭圆C截得的弦长为
5
4
,则求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P(2,1),若抛物线y2=4x的一条弦AB恰好是以P为中点,则弦AB所在直线方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

动点P与两个定点A(-6,0),B(6,0)连线的斜率之积为-
1
3
,P点轨迹为C,
(1)求曲线C的方程;
(2)直线l过M(-2,2)与C交于E,G两点,且线段EG中点是M,求l方程.

查看答案和解析>>

同步练习册答案