ÒÑÖªÊý¼¯X={x1£¬x2£¬¡­£¬xn}£¨ÆäÖÐxi£¾0£¬i=1£¬2£¬¡­£¬n£¬n¡Ý3£©£¬Èô¶ÔÈÎÒâµÄxk¡ÊX£¨k=1£¬2£¬¡­n£©£¬¶¼´æÔÚxi£¬xj¡ÊX£¨xi¡Ùxj£©£¬Ê¹µÃÏÂÁÐÈý×éÏòÁ¿ÖÐÇ¡ÓÐÒ»×é¹²Ïߣº
¢ÙÏòÁ¿£¨xi£¬xk£©ÓëÏòÁ¿£¨xk£¬xj£©£»
¢ÚÏòÁ¿£¨xi£¬xj£©ÓëÏòÁ¿£¨xj£¬xk£©£»
¢ÛÏòÁ¿£¨xk£¬xi£©ÓëÏòÁ¿£¨xi£¬xj£©£¬Ôò³ÆX¾ßÓÐÐÔÖÊP£¬ÀýÈç{1£¬2£¬4}¾ßÓÐÐÔÖÊP£®
£¨1£©Èô{1£¬3£¬x}¾ßÓÐÐÔÖÊP£¬ÔòxµÄȡֵΪ
 

£¨2£©ÈôÊý¼¯{1£¬3£¬x1£¬x2}¾ßÓÐÐÔÖÊP£¬Ôòx1+x2µÄ×î´óÖµÓë×îСֵ֮»ýΪ
 
£®
¿¼µã£ºÆ½ÐÐÏòÁ¿Óë¹²ÏßÏòÁ¿
רÌâ£ºÆ½ÃæÏòÁ¿¼°Ó¦ÓÃ
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º£¨1£¬3£©Ó루3£¬x£©£»£¨1£¬x£©Ó루x£¬3£©£»£¨3£¬1£©Ó루1£¬x£©ÖÐÇ¡ÓÐÒ»×é¹²Ïߣ¬·Ö±ðÇó³öÏàÓ¦µÄxµÄÖµ¼´¿É£»
£¨2£©ÓÉ£¨1£©Öª£¬¿ÉµÃx1=
1
3
£¬
3
£¬9£¬ÔÙÀûÓÃж¨ÒåÑéÖ¤£¬µÃµ½{1£¬3£¬
1
3
£¬x2}¾ßÓÐÐÔÖÊPʱµÄx2=
1
27
£¬
1
9
£¬
3
3
£¬
3
£¬9£¬27£¬
ͬÀí·Ö±ðµÃµ½{1£¬3£¬
3
£¬x2}ÒÔ¼°{1£¬3£¬9£¬x2}¾ßÓÐÐÔÖÊPʱµÄx2µÄÖµ£¬¼´¿ÉµÃµ½x1+x2µÄ×î´óÖµÓë×îСֵ֮»ý£®
½â´ð£º ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º£¨1£¬3£©Ó루3£¬x£©£»£¨1£¬x£©Ó루x£¬3£©£»£¨3£¬1£©Ó루1£¬x£©ÖÐÇ¡ÓÐÒ»×é¹²Ïߣ¬
µ±£¨1£¬3£©Ó루3£¬x£©¹²Ïßʱ£¬¿ÉµÃx=9£¬´ËʱÁíÍâÁ½×é²»¹²Ïߣ¬·ûºÏÌâÒ⣬
µ±£¨1£¬x£©Ó루x£¬3£©¹²Ïßʱ£¬¿ÉµÃx=
3
£¬´ËʱÁíÍâÁ½×é²»¹²Ïߣ¬·ûºÏÌâÒ⣬
µ±£¨3£¬1£©Ó루1£¬x£©¹²Ïßʱ£¬¿ÉµÃx=
1
3
£¬´ËʱÁíÍâÁ½×é²»¹²Ïߣ¬·ûºÏÌâÒ⣬
¹ÊxµÄȡֵΪ£º
1
3
£¬
3
£¬9£»
£¨2£©ÓÉ£¨1£©µÄÇó½â·½·¨¿ÉµÃx1=
1
3
£¬
3
£¬9£¬
µ±x1=
1
3
ʱ£¬ÓÉÊý¼¯{1£¬3£¬
1
3
£¬x2}¾ßÓÐÐÔÖÊP£¬
¢ÙÈô£¨1£¬3£©Ó루3£¬x2£©£»£¨1£¬x2£©Ó루x2£¬3£©£»£¨3£¬1£©Ó루1£¬x2£©ÖÐÇ¡ÓÐÒ»×é¹²Ïߣ¬¿ÉµÃx2=9£¬
3
£»
¢ÚÈô£¨1£¬
1
3
£©Ó루
1
3
£¬x2£©£»£¨1£¬x2£©Ó루x2£¬
1
3
£©£»£¨
1
3
£¬1£©Ó루1£¬x2£©ÖÐÇ¡ÓÐÒ»×é¹²Ïߣ¬¿ÉµÃx2=
3
3
£¬
1
9
£»
¢ÛÈô£¨3£¬
1
3
£©Ó루
1
3
£¬x2£©£»£¨3£¬x2£©Ó루x2£¬
1
3
£©£»£¨
1
3
£¬3£©Ó루3£¬x2£©ÖÐÇ¡ÓÐÒ»×é¹²Ïߣ¬¿ÉµÃx2=
1
27
£¬27£»
¹Ê{1£¬3£¬
1
3
£¬x2}¾ßÓÐÐÔÖÊP¿ÉµÃx2=
1
27
£¬
1
9
£¬
3
3
£¬
3
£¬9£¬27£»
ͬÀíµ±x1=
3
ʱ£¬{1£¬3£¬
3
£¬x2}¾ßÓÐÐÔÖÊP¿ÉµÃx2=
1
3
£¬
3
3
£¬
43
£¬
427
£¬3
3
£¬9£»
ͬÀíµ±x1=9ʱ£¬¿ÉµÃx2=
1
9
£¬
1
3
£¬
3
3
£¬
3
£¬3
3
£¬27£¬81£»
Ôòx1+x2µÄ×î´óֵΪ90£¬×îСֵΪ
1
3
+
1
27
=
10
27
£¬
¹Êx1+x2µÄ×î´óÖµÓë×îСֵ֮»ýΪ90¡Á
10
27
=
100
3
£®
¹Ê´ð°¸Îª£º£¨1£©
1
3
£¬
3
£¬9£»£¨2£©
100
3
£®
µãÆÀ£º±¾Ì⿼²éж¨Ò壬¿¼²éÆ½ÃæÏòÁ¿¹²ÏßµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôZ=
2-i
1+i
£¨iΪÐéÊýµ¥Î»£©£¬ÔòZµÄ¹²éÊýΪ£¨¡¡¡¡£©
A¡¢
1
2
+
3
2
i
B¡¢-
1
2
+
3
2
i
C¡¢
3
2
+
3
2
i
D¡¢
3
2
-
3
2
i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=-
1
3
x3+
1
2
ax2-3x
£¬g£¨x£©=xlnx
£¨¢ñ£©µ±a=4ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©Çóº¯Êýg£¨x£©ÔÚÇø¼ä[t£¬t+1]£¨t£¾0£©ÉϵÄ×îСֵ£»
£¨¢ó£©Èô´æÔÚx1£¬x2¡Ê[
1
e
£¬e]£¨x1¡Ùx2£©£¬Ê¹·½³Ìf¡ä£¨x£©=2g£¨x£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£¨ÆäÖÐe=2.71828¡­ÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬½ÇA£¬B£¬C³ÉµÈ²îÊýÁУ¬ÔòcosB=
 
£»Èôͬʱ±ßa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬Ôòcos2A=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ËıßÐÎABCD£¬ADEF¾ùΪÕý·½ÐΣ¬¡ÏCDE=90¡ã£¬ÔòÒìÃæÖ±ÏßBEÓëCDËù³ÉµÄ½ÇµÄ´óСΪ
 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôsin2¦È+2cos¦È=-2£¬Ôòcos¦È=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢ÙÉè¦ÁÊÇÆ½Ã棬m¡¢nÊÇÁ½ÌõÖ±Ïߣ¬Èç¹ûm?¦Á£¬n?¦Á£¬m¡¢nÁ½Ö±ÏßÎÞ¹«¹²µã£¬ÄÇôn¡Î¦Á£»
¢ÚÉè¦ÁÊÇÒ»¸öÆ½Ãæ£¬m¡¢nÊÇÁ½ÌõÖ±Ïߣ¬Èç¹ûm¡Î¦Á£¬n¡Î¦Á£¬Ôòm¡În£»
¢ÛÈôÁ½ÌõÖ±Ïß¶¼ÓëµÚÈýÌõÖ±Ï߯½ÐУ¬ÔòÕâÁ½ÌõÖ±Ï߯½ÐУ»
¢ÜÈýÌõÖ±Ïß½»ÓÚÒ»µã£¬ÔòËüÃÇ×î¶à¿ÉÒÔÈ·¶¨3¸öÆ½Ãæ£®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªm£¬nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂÊÇÁ½¸ö²»Í¬µÄÆ½Ãæ£¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢Èôm¡Î¦Á£¬n¡Î¦Á£¬Ôòm¡În
B¡¢Èôm¡În£¬m¡Í¦Á£¬Ôòn¡Í¦Á
C¡¢Èôm¡Î¦Á£¬m¡Î¦Â£¬Ôò¦Á¡Î¦Â
D¡¢Èôm¡Î¦Á£¬¦Á¡Í¦Â£¬Ôòm¡Í¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
log2x£¬x£¾0
3x£¬x¡Ü0
£¬ÇÒº¯Êýh£¨x£©=f£¨x£©+x-aÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢[1£¬+¡Þ£©
B¡¢£¨1£¬+¡Þ£©
C¡¢£¨-¡Þ£¬1£©
D¡¢£¨-¡Þ£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸