精英家教网 > 高中数学 > 题目详情
函数f(x)=2x+x3-2在区间(0,1)内的零点个数是________.
1
因为函数f(x)=2x+x3-2的导数为f′(x)=2xln2+3x2≥0,所以函数f(x)单调递增,f(0)=1-2=-1<0,f(1)=2+1-2=1>0,所以根据根的存在定理可知在区间(0,1)内函数的零点个数为1个.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若函数上单调递增,求实数的取值范围;
(2)求函数的极值点.
(3)设为函数的极小值点,的图象与轴交于两点,且中点为
求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a∈R,函数f(x)=4x3-2ax+a.
(1)求f(x)的单调区间;
(2)证明:当0≤x≤1时,f(x)+|2-a|>0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=xax2bln x,曲线yf(x)在点P(1,0)处的切线斜率为2.
(1)求ab的值;
(2)证明:f(x)≤2x-2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递增区间是_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=x3ax2+(a-1)x+1在区间(1,4)上是减函数,在区间(6,+∞)上是增函数,则实数a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函数f(x)的极大值;
(2)若x=1是函数f(x)的一个极值点.
①试用a表示b;
②设a>0,函数g(x)=(a2+14)ex+4.若?ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;
④f(0)f(3)<0.
其中正确结论的序号是(  )
A.①③B.①④
C.②③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x3-15x2-33x+6的单调减区间为________.

查看答案和解析>>

同步练习册答案