分析 (1)连接AC,先证明$\frac{AP}{PC}=\frac{AE}{CE}$,利用切割线定理得到$\frac{AP}{PC}$=$\frac{PD}{AP}$.Rt△ACD中,AB⊥CD,由射影定理得AE2=CE•ED,即可证明AP•ED=PD•AE;
(2)求出AB,证明△ABD是等边三角形,即可求△ABD的面积.
解答
证明:(1)连接AC,
∵PA为⊙O的切线,
∴∠PAC=∠ADC,
∵CD为⊙O的直径,AB⊥CD,
∴∠BDC=∠ADC.
∵∠BDC=∠CAB,
∴∠PAC=∠CAB,
∴$\frac{AP}{AE}$=$\frac{PC}{CE}$,
∴$\frac{AP}{PC}=\frac{AE}{CE}$,
∵PA为⊙O的切线,
∴AP2=PC•PD,
∴$\frac{AP}{PC}$=$\frac{PD}{AP}$.
Rt△ACD中,AB⊥CD,由射影定理得AE2=CE•ED,
∴$\frac{AE}{CE}$=$\frac{ED}{AE}$,
∴$\frac{ED}{AE}=\frac{PD}{AP}$,
∴AP•ED=PD•AE;
解:(2)∵AP∥BD,
∴∠P=∠BDC.
Rt△APE中,∠PAC=∠CAB=∠P=30°,
∴AP=$\sqrt{3}$PC.
∵AP2=PC•PD,
∴AP2=PC(PC+2),
∴PC=AC=1,
∴AE=$\frac{\sqrt{3}}{2}$,AB=$\sqrt{3}$
∵∠ADB=60°,
∴△ABD是等边三角形,
∴S△ABD=$\frac{3\sqrt{3}}{4}$.
点评 本题考查圆的切线的性质,考查切割线定理的运用,考查射影定理,考查学生分析解决问题的能力,知识综合性强.
科目:高中数学 来源: 题型:解答题
| 组数 | 分组 | 频数 |
| 第一组 | [20,25) | 2 |
| 第二组 | [25,30) | a |
| 第三组 | [30,35) | b |
| 第四组 | [35,40) | c |
| 第五组 | [40,45) | d |
| 第六组 | [45,50] | e |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$$<\frac{f(2)}{f(4)}$$<\frac{1}{2}$ | B. | $\frac{1}{4}<\frac{f(2)}{f(4)}$$<\frac{1}{3}$ | C. | $\frac{1}{8}$$<\frac{f(2)}{f(4)}$$<\frac{1}{4}$ | D. | $\frac{1}{16}$$<\frac{f(2)}{f(4)}$$<\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com