精英家教网 > 高中数学 > 题目详情
20.已知方程x2+ax+1=0,x2+2x-a=0,x2+2ax+2=0,若三个方程中至少有一个方程有实根,则实数a的取值范围a≤$-\sqrt{2}$或a≥-1.

分析 由题意得,△1=a2-4≥0或△2=4+4a≥0或△3=4a2-8≥0,从而解得.

解答 解:由题意得,
1=a2-4≥0或△2=4+4a≥0或△3=4a2-8≥0,
解得,a≥2或a≤-2或a≥-1或a≥$\sqrt{2}$或a≤$-\sqrt{2}$;
故a≤$-\sqrt{2}$或a≥-1;
故答案为:a≤$-\sqrt{2}$或a≥-1.

点评 本题考查了二次方程的求法及应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在等比数列{an}中,27a2+a5=0,则$\frac{{a}_{n+1}}{{a}_{n}}$=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知单位向量$\overrightarrow{e_1},\overrightarrow{e_2}$的夹角为$\frac{π}{3}$,设$\overrightarrow a=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow b=-3\overrightarrow{e_1}+2\overrightarrow{e_2}$,则$\overrightarrow a$与$\overrightarrow b$夹角的大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-3x,那么当x>0 时,f(x)的为解析式为(  )
A.f(x)=x2+3xB.f(x)=-x2-3xC.f(x)=x2-3xD.f(x)=-x2-3x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知0<α<β<$\frac{π}{2}$,sinα=$\frac{3}{5}$,cos(α-β)=$\frac{12}{13}$,求cosβ的值;
(2)在△ABC中,sinA-cosA=$\frac{2}{3}$,求cos2A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设a、b、c是不完全相等的正数,求证:
(1)(a+b)(b+c)(c+a)>8abc;
(2)a+b+c>$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ca}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}中,a1=1,an+1=2nan(n∈N+),则数列{an}的通项公式为(  )
A.an=2n-1B.an=2nC.an=2${\;}^{\frac{n(n-1)}{2}}$D.an=2${\;}^{\frac{{n}^{2}}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.张先生从2005年起,每年1月1日到银行新存入a元(一年定期),若年利率为r保持不变,且每年到期存款自动转为新的一年定期,那么到2012年1月1日将所有存款及利息全部取回,他可取回的钱数为(单位为元)(  )
A.$\frac{a}{r}[{(1+r)^8}-(1+r)]$B.$\frac{a}{r}[{(1+r)^7}-(1+r)]$C.a(1+r)7D.a(1+r)8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线a⊥直线b,且a⊥平面α,则(  )
A.b∥αB.b?αC.异面D.不确定

查看答案和解析>>

同步练习册答案