精英家教网 > 高中数学 > 题目详情
6.过点(-2,0)作圆x2+y2-6x=0的切线,求切线方程.

分析 设切线方程,利用圆心到切线的距离等于半径求斜率,即可求切线方程.

解答 解:由题意,切线的斜率存在,设切线方程:y=k(x+2),
即kx-y+2k=0,
∵与圆x2+y2-6x=0的相切,
∴$\frac{|5k|}{\sqrt{{k}^{2}+1}}$=3,解得k=±$\frac{3}{4}$,代入kx-y+2k=0,
化简得,3x±4y+6=0.

点评 本题考查直线与圆的位置关系,考查点到直线距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.求函数y=$\frac{{2}^{x}-1}{{2}^{x}+1}$的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设y=$\frac{2}{cost}$(t为参数),求9y2-4x2=36的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求证:方程3x=$\frac{2-x}{x+1}$在区间(0,1)内有且只有一个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=(a2-1)x在(-∞,+∞)上是增函数,则a的取值范围是(  )
A.|a|>1B.|a|>2C.|a|>$\sqrt{2}$D.1<|a|<$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={x|1≤x<2},B={x|x<a}.若A∩B=A,则实数a的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a,b∈R,函数f(x)=ax2+b(x+1).若对任意实数b,函数g(x)=f(x)-x-2有两不同的零点,求实数a的取值范围(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知y=f(log2x)的定义域为[$\frac{1}{2}$,4],则y=f(x)的定义域是(  )
A.[$\frac{1}{2}$,4]B.(-∞,-1]∪[2,+∞)C.[-1,2]D.(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,1),$\overrightarrow{c}$=$\overrightarrow{a}$+k$\overrightarrow{b}$.若$\overrightarrow{b}$⊥$\overrightarrow{c}$,则实数k的值等于-$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案