精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线(α为参数)经过伸缩变换得到曲线C2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系.

(1)C2的普通方程;

(2)设曲线C3的极坐标方程为,且曲线C3与曲线C2相交于MN两点,点P(10),求的值.

【答案】1;(2.

【解析】

1)先将方程消去参数化为普通方程,根据坐标伸缩关系,即可求得结论;

2)将C3的极坐标方程化为直角坐标方程,点P在曲线C3上,再将C3化为过定P(10)的直线参数方程,代入曲线C2的方程,利用参数的几何意义,即可求解.

1)由

,代入,得

的普通方程是

2)由,得的普通方程为

在曲线上,且此直线的倾斜角为

所以的参数方程为为参数),

的参数方程代入曲线

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左右焦点分别为F1F2,过F1的直线交椭圆CAB两点,△AF2B的周长为,且椭圆C经过点

1)求椭圆C的方程;

2)当AB的中点坐标为时,求△AF2B的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数满足不等式组,若的最大值为8,则z的最小值为(

A.2B.1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Γ的准线方程为.焦点为.

1)求证:抛物线Γ上任意一点的坐标都满足方程:

2)请求出抛物线Γ的对称性和范围,并运用以上方程证明你的结论;

3)设垂直于轴的直线与抛物线交于两点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1),解不等式

(2)若当时,关于的不等式恒成立,求的取值范围;

(3),若存在使不等式成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:

方案一:每天回报元;

方案二:第一天回报元,以后每天比前一天多回报元;

方案三:第一天回报元,以后每天的回报比前一天翻一番.

记三种方案第天的回报分别为.

1)根据数列的定义判断数列的类型,并据此写出三个数列的通项公式;

2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)若函数在定义域内是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论函数的极值点的个数;

若函数有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若,试判断的零点个数.

查看答案和解析>>

同步练习册答案