精英家教网 > 高中数学 > 题目详情
某校按下述要求随机安排4个班的学生到3个工厂进行社会实践,要求:每个班去一个工厂,每个工厂至少安排一个班,则其中甲、乙两个班被安排到同一个工厂的概率为
 
考点:古典概型及其概率计算公式
专题:概率与统计
分析:根据所有的分配方案有
C
2
4
A
3
3
 种,其中甲、乙两个班被安排到同一个工厂的方法有
A
3
3
种,从而求得甲、乙两个班被安排到同一个工厂的概率.
解答: 解:所有的分配方案有
C
2
4
A
3
3
=36种,其中甲、乙两个班被安排到同一个工厂的方法有
A
3
3
=6种,
故甲、乙两个班被安排到同一个工厂的概率为
6
36
=
1
6

故答案为:
1
6
点评:本题主要考查古典概型及其概率计算公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数(1+i)2-
1-i
1+i
(i为虚数单位)的值为 (  )
A、0B、2iC、3iD、-4i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-3x+3)ex,其中e是自然对数的底数.
(1)若x∈[-2,a],-2<a<1,求函数y=f(x)的单调区间;
(2)设a>-2,求证:f(a)>
13
e2

(3)对于定义域为D的函数y=g(x),如果存在区间[m,n]⊆D,使得x∈[m,n]时,y=g(x)的值域是[m,n],则称[m,n]是该函数y=g(x)的“保值区间”.设h(x)=f(x)+(x-2)ex,x∈(1,+∞),问函数y=h(x)是否存在“保值区间”?若存在,请求出一个“保值区间”; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|ax+x2-x•lna-m|-2,(a>0且a≠1)有两个零点,则m的取值范围(  )
A、(-1,3)
B、(-3,1)
C、(3,+∞)
D、(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<-2或x>3},B={x|log4(x+a)<1},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC满足|BC|=6,|AB|+|AC|=10,则下列命题正确的是
 
(写出所有正确命题的编号).
①点A的轨迹是椭圆;
②△ABC可以是以∠A为直角的直角三角形;
③△ABC面积的最大值为12;
④△ABC外接圆半径存在最小值,且为
25
8

⑤△ABC内切圆半径存在最大值,且为
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
2lg(lga100)
2+lg(lga)

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A、B、C对边的长a、b、c成等比数列,则
sinB+sinC
sinA
的取值范围是(  )
A、(0,+∞)
B、(0,2+
5
C、(1,+∞)
D、(1,2+
5

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sin(ωx+φ)(ω>0,且|φ|<
π
2
)
的部分图象如图所示,则f(π)的值为
 

查看答案和解析>>

同步练习册答案