精英家教网 > 高中数学 > 题目详情
△ABC的内角A、B、C对边的长a、b、c成等比数列,则
sinB+sinC
sinA
的取值范围是(  )
A、(0,+∞)
B、(0,2+
5
C、(1,+∞)
D、(1,2+
5
考点:正弦定理,等比数列的通项公式
专题:解三角形
分析:
b
a
=
c
b
=q,则由任意两边之和大于第三边求得q的范围,可得
sinB+sinC
sinA
的取值范围
解答: 解:设
b
a
=
c
b
=q,则
sinB+sinC
sinA
=
b+c
a
=q+q2,则由
a+aq>aq2
a+a2q>aq
aq+aq2>a
,求得
5
-1
2
<q<
5
+1
2

3-
5
2
<q2
3+
5
2
,∴1<q+q2<2+
5

故选:D.
点评:本题考查数列与三角函数的综合应用,是基础题.解题时要认真审题,仔细解答,注意三角形三边关系的灵活运用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2-3x(a,b∈R),f(x)在x=1处取得极值,且f(x)的导函数是偶函数.
(1)若对于任意的x1,x2∈[-2,2],都有|f(x1)-f(x2)|≤c,求实数c的最小值;
(2)若过点M(2,m)(m≠2),可作曲线y=f(x)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校按下述要求随机安排4个班的学生到3个工厂进行社会实践,要求:每个班去一个工厂,每个工厂至少安排一个班,则其中甲、乙两个班被安排到同一个工厂的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:log2.56.25.

查看答案和解析>>

科目:高中数学 来源: 题型:

对命题p:1∈{1},命题q:1∉∅,下列说法正确的是(  )
A、p且q为假命题
B、p或q为假命题
C、非p为真命题
D、非q为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

在矩形ABCD中,AB=2,AD=6,E、F为AD的两个三等分点,AC和BF交于点G,△BEG的外接圆为圆H.
(1)求证:EG⊥BF;
(2)若圆H与圆C无公共点,求圆C半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x-y+1≥0
x+y≥0
x≤3
则z=x+2y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点,过F的直线与椭圆交于A,B两点.
(1)若点A为椭圆的上顶点,满足AF=2FB,且椭圆的右准线方程为x=3
3
,求椭圆的标准方程;
(2)若点A,B在椭圆的右准线上的射影分别为A1,B1(如图所示),求证:∠A1FB1为锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:

“五一”期间,甲乙两个商场分别开展促销活动.
(1)甲商场的规则是:凡购物满100元,可抽奖一次.从装有大小、形状相同的4个白球、4个黑球的袋中摸出4个球,中奖情况如下表:
摸出的结果获得奖金(单位:元)
4个白球或4个黑球200
3个白球1个黑球或3个黑球1个白球20
2个黑球2个白球10
记X为抽奖一次获得的奖金,求X的分布列和期望.
(2)乙商场的规则是:凡购物满100元,可抽奖10次.其中,第n(n=1,2,3,…,10)次抽奖方法是:从编号为n的袋中(装有大小、形状相同的n个白球和n个黑球)摸出n个球,若该次摸出的n个球颜色都相同,则可获得奖金5×2n-1元.各次摸奖的结果互不影响,最终所获得的总奖金为10次奖金之和.若某顾客购买120元的商品,不考虑其它因素,从获得奖金的期望分析,他应该选择哪一家商场?

查看答案和解析>>

同步练习册答案