精英家教网 > 高中数学 > 题目详情

【题目】某少数民族的刺绣有着悠久的历史,下图为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.

(1)求出

(2)利用合情推理的“归纳推理思想”归纳出的关系式,

(3)根据你得到的关系式求的表达式

【答案】(1)41(2)f(n)=2n2﹣2n+1.

【解析】试题分析】(1)先求出,找出规律,求出;(2)借助归纳推理找出规律:-;(3)借助(2)的规律-运用两边叠加的方法求解:

解:(Ⅰ)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,

∴f(2)﹣f(1)=4=4×1.

f(3)﹣f(2)=8=4×2,

f(4)﹣f(3)=12=4×3,

f(5)﹣f(4)=16=4×4

∴f(5)=25+4×4=41.

(Ⅱ)由上式规律得出f(n+1)﹣f(n)=4n.

∴f(2)﹣f(1)=4×1,

f(3)﹣f(2)=4×2,

f(4)﹣f(3)=4×3,

f(n﹣1)﹣f(n﹣2)=4(n﹣2),

f(n)﹣f(n﹣1)=4(n﹣1)

∴f(n)﹣f(1)=4[1+2+…+(n﹣2)+(n﹣1)]=2(n﹣1)n,

∴f(n)=2n2﹣2n+1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一家医药研究所,从中草药中提取并合成了甲、乙两种抗“病毒”的药物,经试验,服用甲、乙两种药物痊愈的概率分别为.现已进入药物临床试用阶段,每个试用组由4位该病毒的感染者组成,其中2人试用甲种抗病毒药物,2人试用乙种抗病毒药物,如果试用组中,甲种抗病毒药物治愈人数超过乙种抗病毒药物的治愈人数,则称该组为“甲类组”.

(1)求一个试用组为“甲类组”的概率;

(2)观察3个试用组,用表示这3个试用组中“甲类组”的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:

年 份

2008

2009

2010

2011

2012

2013

2014

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.7

3.6

3.3

4.6

5.4

5.7

6.2

对变量ty进行相关性检验,得知ty之间具有线性相关关系.

(1)求y关于t的线性回归方程;

(2)预测该地区2017年的居民人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程为

1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;

2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科技兴趣小组对昼夜温差的大小与小麦新品种发芽多少之间的关系进行了研究,记录了2016年12月1日至12月5日五天的昼夜温差与相应每天100颗种子的发芽得到了如下数据:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差

9

11

10

12

13

发芽数(颗)

21

34

26

36

40

现从这5组数据中任选两组,用余下的三组数据求回归直线方程,再对被选取的两组数据进行检验.

(Ⅰ)求选取的两组数据恰好是不相邻的两天的概率;

(Ⅱ)若选取的是12月1日和12月5日的两组数据,请根据余下的三组数据,求出的线性回归直线方程

(Ⅲ)若由线性回归直线方程得到的估计值与所选出的两组实际数据的误差均不超过两颗,则认为得到的回归直线方程是可靠的,试判断(Ⅱ)中得到的线性回归直线方程是否可靠.

附:在线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某权威机构发布了2014年度“城市居民幸福排行榜”,某市成为本年度城市最“幸福城”.随后,该市某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

(1)指出这组数据的众数和中位数;

(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;

(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,P是正方形ABCD对角线的交点,GPB的中点.

(1)根据三视图,画出该几何体的直观图.

(2)在直观图中,①证明:PD∥平面AGC;

②证明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了了解两班学生寒假期间观看《中国诗词大会》的时长,分别从这两个班中随机抽取5名学生进行调查,将他们观看的时长(单位:小时)作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)分别求出图中所给两组样本数据的平均值,并据此估计哪个班的学生平均观看的时间较长;

(2)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.

学生序号

1

2

3

4

5

6

7

8

9

10

立定跳远

(单位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳绳

(单位:次)

63

a

75

60

63

72

70

a-1

b

65

在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则(  )

A. 2号学生进入30秒跳绳决赛 B. 5号学生进入30秒跳绳决赛

C. 8号学生进入30秒跳绳决赛 D. 9号学生进入30秒跳绳决赛

查看答案和解析>>

同步练习册答案