精英家教网 > 高中数学 > 题目详情
18.若集合A={1,2,3,4,5},且对应关系f:x→y=x(x-4)是从A到B的映射,则集合B中至少有4个元素.

分析 y=x(x-4)关于x=2对称,所以有4个y值,即可得出结论.

解答 解:y=x(x-4)关于x=2对称,所以有4个y值,故B至少4个元素.
故答案为:4.

点评 本题考查映射的概念,考查函数的对称性,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.不等式|y+8|-|y|≤2x+$\frac{a}{{2}^{x}}$对任意实数x、y都成立,则常数a的取值范围是a≥16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+$\frac{π}{4}$)(A>0,ω>0),g(x)=tanx,它们的最小正周期之积为2π2,f(x)的最大值为2g($\frac{17π}{4}$)
(1)求f(x)的单调递增区间;
(2)设h(x)=$\frac{3}{2}$[f2(x)-2]+2$\sqrt{3}$cos2x,求h(x)的最大值,并写出取得最大值自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A={x|x<3},B={x|x≤a}.
(1)若B⊆A,求实数a的取值范围;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知2z+|z|=2+6i,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知A=2B,sinB=$\frac{\sqrt{7}}{4}$.若△ABC的面积S△ABC=$\frac{15\sqrt{7}}{4}$,则边AB的长为(  )
A.5B.6C.6$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=log3$\frac{m{x}^{2}+8x+2}{{x}^{2}+1}$在($\frac{1}{4}$,1)上有意义,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设x>0,y>0且x+2y=1,f(x,y)=$\frac{1}{x}$+$\frac{1}{y}$+$\sqrt{\frac{1}{{x}^{2}}+\frac{1}{{y}^{2}}}$的最小值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知m∈R,n∈R,并且m+3n=1,则mem+3ne3n的最小值$\sqrt{e}$.

查看答案和解析>>

同步练习册答案