精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=lnx+$\frac{a}{x+1}+b$(a,b∈R)
(1)当a=4,b=-2时,求函数f(x)在x=1处的切线方程
(2)在(1)的前提下,若函数f(x)的图象恒不在曲线y=$\frac{k}{x+1}$(x≥1)的下方,求k的取值范围
(3)若f(x)在定义域上是单调函数,且零点为1,求a(b+1)的取值范围.

分析 (1)求导数,确定切线的斜率,切点的坐标,即可求函数f(x)在x=1处的切线方程;
(2)题意,lnx+$\frac{4}{x+1}$-2-$\frac{k}{x+1}$≥0(x≥1)恒成立,可得k≤(x+1)lnx+2-2x(x≥1),求出右边的最大值,即可求k的取值范围
(3)f(x)定义域为(0,+∞),f(1)=a+b+1=0,所以b+1=-a,利用f(x)在定义域上是单调函数,所以f'(x) 在x>0时,要么恒≥0,要么恒≤0,可得a≤0,即可求a(b+1)的取值范围.

解答 解:(1)当a=4,b=-2时,f(x)=lnx+$\frac{4}{x+1}$-2,
∴f′(x)=$\frac{1}{x}$-$\frac{4}{(x+1)^{2}}$,
∴f′(1)=0,f(1)=0,
∴当a=4,b=-2时,函数f(x)在x=1处的切线方程y=0;
(2)由题意,lnx+$\frac{4}{x+1}$-2-$\frac{k}{x+1}$≥0(x≥1)恒成立,
∴k≤(x+1)lnx+2-2x(x≥1).
令g(x)=(x+1)lnx+2-2x,g′(x)=lnx+$\frac{1-x}{x}$<0,函数单调递减,
∴x=1时,g(x)max=0,
∴k≤0;
(3)f(x)定义域为(0,+∞),f(1)=a+b+1=0,所以b+1=-a,
而f'(x)=$\frac{x-a}{{x}^{2}}$.
由于f(x)在定义域上单调,所以f'(x) 在x>0时,要么恒≥0,要么恒≤0,
即 x-a≥0 或者 x-a≤0,
也即 x≥a 或者 x≤a 当x>0时,两者之一恒成立,
而显然当x>0时,x≤a不可能恒成立,
所以只能a≤0,
从而a(b+1)=-a2≤0.

点评 本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若集合E={x|-1<x<9,x∈N},F={y|y=x-5,x∈E},则E∩F=(  )
A.{1,2,3}B.C.{0,1,2,3}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,an>0,a1=$\frac{1}{2}$,如果an+1是1与$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$的等比中项,那么a1+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{3}^{2}}$+$\frac{{a}_{4}}{{4}^{2}}$+…+$\frac{{a}_{2016}}{201{6}^{2}}$的值$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果a>1,那么a+$\frac{{a}^{2}}{a-1}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a>1,设命题P:a(x-2)+1>0,命题Q:(x-1)2>a(x-2)+1.试求使得P、Q都是真命题的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.A={α|2k•180°+30°<α<2k•180°+180°,k∈Z},B={β|k•180°-45°<β<k•180°+45°,k∈Z},
则A∩B={x|2k•180°+30°<α<2k•180°+45°或2k•180°+135°<α<2k•180°+180°,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=2cos($\frac{π}{3}$x+φ)的一个对称中心为(2,0),φ∈(0,π),则φ=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若圆锥的侧面面积与过轴的截面面积之比为2π,则其半径与母线的比为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了解2015-2016学年高一学生的体能情况,某校随机抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出了频率直方图.如图所示,已知次数在[100,110)间的频数为7,次数在110以下(不含110)视为不达标,次数在[110,130)视为达标,次数在130以上视为有优秀.
(I)求此次抽样的样本总数为多少人?
(II)在优秀的样本中,随机抽取二人调查,则抽到的二人一分钟跳绳次数都在[140,150)的概率.

查看答案和解析>>

同步练习册答案