精英家教网 > 高中数学 > 题目详情

【题目】现有2名男生和3名女生. (Ⅰ)若其中2名男生必须相邻排在一起,则这5人站成一排,共有多少种不同的排法?
(Ⅱ)若男生甲既不能站排头,也不能站排尾,这5人站成一排,共有多少种不同的排法?

【答案】解:(Ⅰ)若2名男生相邻排在一起,可看成一个元素,与另外3个女生任意排,有 种排法,2名男生任意排,有2种方法,

根据分步乘法计数原理,共有2×4!=48种不同的排法

(Ⅱ)若男生甲既不能站排头,也不能站排尾,则甲有3种排法,另外4人任意排,有 种排法,

根据分步乘法计数原理,共有3×4!=72种不同的排法


【解析】(Ⅰ)若2名男生相邻可捆绑看成一个元素,与另外3个女生任意排,有 种排法,对捆绑的2名男生松绑,有2种方法,根据分步乘法计数原理,可得答案;(Ⅱ)先排甲有3种排法,另外4人任意排,有 种排法,利用分步乘法计数原理可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为F(1,0),且点 在椭圆C上,O为坐标原点. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过定点T(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知PA⊥平面ABCD,且四边形ABCD为矩形,M、N分别是AB、PC的中点.

(1)求证:MN⊥CD;
(2)若∠PDA=45°,求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角梯形ABCD如图所示,分别以AB、BC、CD、DA所在直线为轴旋转,试说明所得几何体的大致形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是奇函数且当 时是减函数,若 ,则函数 的零点共有( )
A.4个
B.5个
C.6个
D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,a为正常数.
(1)若f(x)=lnx+φ(x),且 ,求函数f(x)的单调增区间;
(2)若g(x)=|lnx|+φ(x),且对任意x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f:A→B是A到B的一个映射,其中 ,f:(x,y)→(x-y,x+y),求与A中的元素(-1,2)相对应的B中的元素和与B中的元素(-1,2)相对应的A中的元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是定义在同一区间 上的两个函数,若函数 为函数 的导函数),在 上有且只有两个不同的零点,则称 上的“关联函数”,若 ,是 上的“关联函数”,则实数 的取值范围是( ).
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(m2m-1)x-5m-3m为何值时,f(x):

(1)是幂函数;

(2)是正比例函数;

(3)是反比例函数;

(4)是二次函数.

查看答案和解析>>

同步练习册答案