精英家教网 > 高中数学 > 题目详情
2.(1)若椭圆的一个焦点和短轴的两个端点构成一个正三角形,求该椭圆的离心率;
(2)已知F1,F2是椭圆的两焦点,过F1且与长轴垂直的直线交椭圆与A,B两点,若△ABF2是正三角形,求椭圆的离心率.

分析 (1)根据椭圆的短轴的两个端点与椭圆的一个焦点构成正三角形,得到a,b,c的关系,又根据椭圆的基本性质可知a2=b2+c2,把可用b表示出c,然后根据离心率e的公式,化简求解即可.
(2)利用△ABF2是正三角形列出方程,由此推导出这个椭圆的离心率.

解答 解:(1)由题意,∵椭圆的短轴的两个端点与椭圆的一个焦点构成正三角形
∴$\sqrt{3}$b=c,3b2=c2
∵a2=b2+c2=$\frac{4}{3}$c2
∴e=$\frac{c}{a}$=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{\frac{3}{4}}$=$\frac{\sqrt{3}}{2}$.
(2)由题|AF1|=$\frac{\sqrt{3}}{3}$|F1F2|,∴$\frac{{b}^{2}}{a}$=$\frac{\sqrt{3}}{3}$•2c即a2-c2=$\frac{2\sqrt{3}}{3}$ac
∴c2+$\frac{2\sqrt{3}}{3}$ac-a2=0,
∴e2+$\frac{2\sqrt{3}}{3}$e-1=0,
解之得:e=$\frac{\sqrt{3}}{3}$(负值舍去).

点评 此题考查学生掌握椭圆的简单性质,离心率的求法,考查了数形结合的数学思想,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在△ABC中,已知AB=$\sqrt{3}$,AC=1,∠B=30°,则△ABC的面积是(  )
A.$\frac{\sqrt{3}}{2}$B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$D.$\sqrt{3}$或2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$sin({α-β})cosα-cos({β-α})sinα=\frac{4}{5}$,β是第三象限角,求$sin({β+\frac{5}{4}π})$,$cos({β+\frac{π}{3}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求定积分$\int_1^3{|x-2|dx}$
(2)若复数Z1=a+2i(a∈R),Z2=3-4i(i为虚数单位)且$\frac{{Z}_{1}}{{Z}_{2}}$为纯虚数,求|Z1|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥S-ABCD,SA⊥平面ABCD,E是SC的中点,AD=AB=2,CD=CB=2$\sqrt{3}$,AC=4,SA=2$\sqrt{2}$.
(1)证明:平面BDE⊥平面SBC;
(2)求二面角A-DE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足:$\sqrt{3}a=\sqrt{3}ccosB+bsinC$.
(1)求∠C的值;
(2)若$c=2\sqrt{3}$,求2a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.y=sin($\frac{π}{3}$-2x)单调增区间为(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5}{12}$π],(k∈Z)B.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],(k∈Z)
C.[kπ+$\frac{5}{12}$π,kπ+$\frac{11}{12}$π],(k∈Z)D.[kπ+$\frac{π}{6}$,kπ+$\frac{2}{3}$π],(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.从1,2,3,…,10中,甲乙两人各取一数(不重复),已知甲取到的数是5的倍数,则甲数大于乙数的概率为$\frac{13}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.当x≥4时,x+$\frac{4}{x-1}$的最小值为$\frac{16}{3}$.

查看答案和解析>>

同步练习册答案